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Preface

Algebra 1 is the first of the three courses making up the algebra curriculum at Leiden

University. The distribution of algebra over the three courses roughly matches the

traditional subdivision groups–rings–fields. This corresponds to increasing “specializa-

tion” rather than increasing difficulty: a ring is a group with an additional operation,

and a field is a ring with special nice properties. These course notes, devoted mainly to

group theory, are intended as a first introduction to algebra. Little prior knowledge is

required, and certain interesting examples of groups, such as matrix groups over finite

fields or fundamental groups of topological spaces, will therefore not be discussed in

detail, if at all.

The reader is expected to have an idea of what a mathematical proof is, and in

particular a proof by complete induction or by contradiction. Simple notions from set

theory such as injection, surjection, bijection, and equivalence relation are used without

further explanation. Prior knowledge of linear algebra is not strictly necessary, but

some of the examples and exercises assume familiarity with basic concepts such as

linear map, matrix, and determinant.

A characteristic property of the algebra course notes is the abundance of exercises.

There are more than can be given as homework or discussed, and students must each

decide how many exercises they can handle. It is clear in practice that algebra is

a subject in which it does not suffice to memorize theorems or tricks. It is more like

swimming: you cannot learn it by watching others do it, and once you have mastered it,

you often no longer understand what was so difficult about it. Doing as many exercises

as possible is essential, and the grade for the course is therefore based in part on weekly

homework assignments to be turned in—a proven method in which we moreover leave

the student much academic freedom in the choice of the exercises. Exercises with a

star are for those seeking (even) more challenge. They require an original idea or use

concepts that are somewhat outside the scope of the course material.

These course notes contain more material than can be covered in the course Al-

gebra 1. Section 7 can be skipped without a problem. It is possible to limit Section 3

to treating the orthogonal group and its finite subgroups and to not discuss the semi-

direct product from Section 8. The resulting additional time can be spent on (parts

of) the last two sections, which give a somewhat more mature look at group theory.

Another possibility is to cut back the number-theoretic Section 6 in favor of the “purely

group-theoretic” later sections.

To increase their usefulness as reference work, these course notes are provided

with a comprehensive index.
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1 What Is Algebra?

Somewhat inaccurately, one could say that algebra axiomatizes and studies in abstracto

the “mathematical structures” that surround us.1 In secondary school, where, in gen-

eral, real numbers are the manipulated objects, algebra often means something like

“doing arithmetic with letters,” where frequently parentheses are either eliminated or,

conversely, added by either “expanding” or “factoring,” respectively. There are many

more interesting objects in mathematics than just the real numbers and functions

thereof. The algebra we will develop can be applied in all of these cases. This means

that the symbols we will be “doing arithmetic” with will not always be numbers; they

will often be matrices, geometric maps, permutations of sets, or whatever else we find

useful for solving our problem.

An essential feature of modern mathematics is that it generally does not consider

a single function, matrix, or equation but rather, if possible, a whole set of similar

objects at once. Therefore, instead of functions and matrices, we encounter “function

spaces” and “matrix groups”; these are large, often infinite collections of functions or

matrices with certain common properties—for example, sets of differentiable functions

or invertible matrices.

Algebra establishes axiomatic rules for “doing arithmetic” with the elements of

such sets. At first glance, this may sound abstract and dull, more like something for

taxonomists or aspiring accountants. However, the aim of such a minimalistic approach,

where interesting results concerning the structure of the underlying set are deduced

from a small number of axioms, is applicability and clarity. Therefore, the axioms we

will encounter in this course are not arbitrary choices but serve to “model” interesting

mathematics. The abstract way we will do this has significant advantages: with minor

adjustments, eliminating redundant assumptions and coincidences in a given problem

often leads to more transparent reasoning and a better understanding of the situation.

Finally, and perhaps most importantly, it turns out that a generality discovered in this

way also leads to results in what may seem to be completely different situations.

The price for discovering universal truths is the effort required to master a some-

what abstract way of thinking. This often takes time, which is why algebra sometimes

seems “difficult” at first. However, history has shown that acquiring some algebraic

skills is well worth the effort, and since the 1930s, “abstract algebra” has become an

essential tool for both pure and applied mathematicians.

▶ Groups, Rings, and Fields

In these course notes, we will primarily study sets on which a single binary operation is

defined. The elements of the set are generally numbers, matrices, or certain maps; the

binary operation, which out of two given elements makes a third, is usually something

such as addition, multiplication, or composition. We will provide the exact axioms in

Definition 2.1 in §2. We summarize them by saying that the set in question becomes a

1 For this and subsequent references, see the section “Literature.”
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Algebra I– §1

group through the given binary operation.

As we can already see from classic examples such as numbers, polynomials, and

matrices, it is common for a set to be naturally endowed with both an addition and

a multiplication; these satisfy simple rules such as a(b + c) = ab + ac. Such objects

with two operations, called rings, are ubiquitous in mathematics. We define them in

Definition 6.8 but will postpone a systematic study until the course Algebra 2. Popular

examples of rings in analysis and linear algebra are R and C. In these rings, we can

not only add and multiply but also divide by all elements (different from 0)—something

that is much less straightforward in, for example, the case of matrix rings. Because of

this nice property, R and C are typical examples of a kind of ring called a field.

The theory of fields and inclusions among them is called Galois theory, after its

discoverer Évariste Galois (1810–1831), who died in a duel2 at a young age. It was in

this theory that the abstract notion of a group first manifested itself. Nowadays, math-

ematicians prefer to reverse the chronological order and first study abstract groups, to

later apply these effectively in Galois theory. We will do so too. As it happens, group

theory has simpler examples and applications than Galois theory and is better at ex-

pressing the unifying character of the notion of a group.

In this introductory section, we first present some examples that clarify why the

axioms for a group given in 2.1 are rather obvious: they are simply the rules that most

of the examples satisfy. The examples give a good idea of what we will encounter in

this course and show that the same group structure can occur in different guises.

▶ Symmetries of the Rhombus

We begin with a simple example from geometry that deals with the fundamental notion

of symmetry. A symmetry of a plane figure is a map from the plane to itself that

preserves the mutual distances between points and sends the given figure to itself. Let

us consider the symmetries of the rhombus ABCD in the plane R2 shown below.

C

B

D

A

Sy

Sx

Two symmetries stand out immediately: the rhombus is mapped to itself by the reflec-

tions in the x- and y-axes. Carrying out two symmetries consecutively always leads to

a symmetry: the composition. It is easy to see that the composition h = sx ◦ sy of the
two reflections in the coordinate axes is a half turn about the origin. Note that the

order in which we compose the reflections does not matter in this case. As we have

chosen the rhombus to be symmetric about the origin, the symmetries sx, sy, and h are

linear maps from R2 to itself. Those who like matrices can express these symmetries
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Algebra I– §1

in matrix form as

sx =

(
1 0

0 −1

)
, sy =

(
−1 0

0 1

)
, h =

(
−1 0

0 −1

)
.

We can also observe that every symmetry of the rhombus is fixed by its action on the

vertices and choose notation for that action that takes this into account, for example

sx = (BD), sy = (AC), h = (AC)(BD).

We can easily see that we cannot make a new symmetry through composition from the

three we found. After all, the symmetries sx, sy, and h are of order 2, which means

that their “square” is the identity, the map that leaves all points in place. Moreover,

the “product” of two distinct symmetries from our triple is always the third. If we

count the identity as the “trivial symmetry,” then we have found a set of symmetries

that is closed under composition of symmetries.

1.1. Theorem. The set V4 = {id, sx, sy, h} is the complete symmetry set of the rhom-

bus ABCD. The three non-trivial symmetries in V4 are of order 2, and the product of

two distinct non-trivial symmetries equals the third.

Proof. We only need to show that there are no other symmetries than the four men-

tioned. So let s be an arbitrary symmetry of the rhombus. As s can only either fix the

acute angle A of the rhombus or send it to the other acute angle C, we have s(A) = A

or (sy◦s)(A) = A. A symmetry that fixes A must also fix C, which means that either it

is the identity, or it only interchanges the obtuse angles B and D and therefore equals

sx. In the case s(A) = A, we have s = id or s = sx, and we are done. In the case

(sy ◦ s)(A) = A, we have sy ◦ s = id or sy ◦ s = sx. In the identity sy ◦ s = id, we can

compose on the left and right with sy; as sy ◦ sy = id, this gives s = sy. For sy ◦ s = sx,

composing with sy gives s = sy ◦ sx = h, the fourth and last possibility for s.

Exercise 1. Determine which general properties of the composition of maps (in particular concerning

“moving around parentheses”) we are using here.

The set V4 with four elements we just found consists of a “trivial element” and three

elements of order 2 with the property that the product of two of those elements always

gives the third. This “structure,” also called the Klein four-group, comes in many

guises.

▶ Arithmetic Modulo 8

Let us now show how the Klein four-group also occurs in number theory. We want to

find all integers x and y that satisfy the equation

(1.2) 3x2 + 2 = y2.

Geometers will recognize the equation of the hyperbola in the plane and say that we

apparently want to determine the points on this hyperbola with integer coordinates.
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Exercise 2. Draw the curve with equation 3x2 + 2 = y2 in the plane R2.

Looking at the equation, we can easily see that the numbers x and y that satisfy

equation (1.2) are either both even or both odd. If we write the equation as 2 = y2−3x2,
then it becomes clear that x and y cannot both be even. After all, the square of an

even number is divisible by 4 (why?), so if x and y are even, the number y2 − 3x2 is

divisible by 4 and therefore not equal to 2. We are left with the possibility that x and

y are both odd.

When x and y are both odd, we apply a little trick called “arithmetic modulo 8,”

about which we will first prove a theorem. Observe that when divided by 8, every

odd number has remainder equal to 1, 3, 5, or 7. In other words, the odd numbers

split up into residue classes modulo 8 that we can evocatively denote by 1, 3, 5, and 7.

If, for example, we take an element a from the class 3 and an element b from the

class 5, then it is not difficult to calculate in which class ab lies. After all, if we write

a = 8a′+3 and b = 8b′+5 with a′ and b′ integer, then we find ab = (8a′+3)(8b′+5) =

8(8a′b′+5a′+3b′)+ 15, which shows that ab is an 8-tuple+15; this is exactly the same

as an 8-tuple+7, so ab lies in the residue class 7. As the result does not depend on

exactly what element we choose in 3 and 5, we often say, for short, that we can multiply

the classes 3 and 5 and simply write the entire calculation as 3 · 5 = 15 = 7.

Similarly, we can multiply any two residue classes in the set V ′
4 = {1, 3, 5, 7}.

Multiplying by 1 does not change a residue class, so the class 1 acts as a kind of

identity. The class 1 is often called a unit element for multiplication in V ′
4 . For other

products, we first find

3 · 3 = 5 · 5 = 7 · 7 = 1,

so the elements 3, 5, and 7 are each “of order 2.” The identities

3 · 5 = 7, 3 · 7 = 5, and 5 · 7 = 3

show that the product of two distinct classes in {3, 5, 7} always yields the third. This

gives us the following “structure theorem” for the odd residue classes modulo 8.

1.3. Theorem. The set V ′
4 = {1, 3, 5, 7} of odd residue classes modulo 8 has a natural

multiplication. Under this multiplication, 1 is a unit element, and the three remaining

elements are of order 2. The product of two distinct elements of order 2 in V ′
4 is equal

to the third element of order 2.

We now return to our equation 3x2 + 2 = y2. If x and y are odd, then the structure

theorem 1.3 shows that x2 and y2 are in the class 1. But if x2 is in 1, then 3x2 + 2 is

in 3 · 1 + 2 = 5. We conclude that 3x2 +2 cannot equal y2 and that equation (1.2) has

no integer solutions.

Exercise 3. Show that the equation 11x2 + 1002 = 87y2 does not have any integer solutions.

Comparing Theorems 1.1 and 1.3, we see that V4 and V ′
4 apparently have “the same

structure.” This becomes even clearer if we make multiplication tables for the values
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of the “products” ab of elements of V4 and V ′
4 :

a ↓ b→ id sx sy h

id id sx sy h

sx sx id h sy

sy sy h id sx

h h sy sx id

a ↓ b→ 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

The bijection f : V4 → V ′
4 defined by id 7→ 1, sx 7→ 3, sy 7→ 5, and h 7→ 7 has the

property that it “respects” multiplication. Such an f is called an isomorphism, and

the symmetry group V4 and the multiplicative group V ′
4 are said to be isomorphic.

▶ Symmetries of the Square

We obtain a slightly more complicated example, which at first glance looks very sim-

ilar to that of the rhombus ABCD, by deforming the rhombus to a square ABCD

and asking again what the symmetries are. The symmetries in 1.1 are obviously also

symmetries of the square ABCD, but there are more.

C

B

A

D Sy=−x

Sy=x

Sy

Sx

r

Striking “new” symmetries are the rotation r by a quarter turn about the origin and

the reflections in the lines y = x and y = −x. The quarter turn r is a symmetry

of order 4: only after applying r four times do we obtain the identity. The “three-

quarter turn” r3 = r ◦ r ◦ r, which is the inverse of r, is also a symmetry of order 4.

The symmetry r2, which is nothing but h, has order 2. In addition to the four “old”

symmetries from Theorem 1.1, we have found four new ones, namely r, r3, and the

reflections mentioned above. Through some trial and error, we can see that we cannot

make any new symmetries from these eight through composition.

1.4. Theorem. The set D4 of symmetries of the square ABCD has eight elements:

the four rotations about the origin by multiples of π/2 and the reflections in the four

lines connecting the origin to a vertex or the midpoint of a side.

Proof. Let s be a symmetry of the square. By composing s with a number of quarter

turns, we can obtain a symmetry that leaves the vertex A in place. Then this symmetry
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Algebra I– §1

also leaves the vertex C in place—after all, B and D are closer to A than C, so a

symmetry (which preserves distances) cannot send C to either of them. There are only

two possibilities for a symmetry of the square that leaves A and C in place: the identity

and the reflection sx, which interchanges B and D. We conclude that by composing s

with a “power” of r, we can transform it into the identity or the reflection sx. In the

first case, s itself is one of the four powers of r and therefore equal to one of the four

listed rotations about the origin. In the second case, we have an identity of the type

rj ◦ s = sx,

where we can take j ∈ {0, 1, 2, 3}. By composing with a power of r on both sides, we

can ensure that we have r4 ◦ s = id ◦s = s on the left, which gives s = rk ◦ sx for some

k. Again, there are four choices for k, which gives four elements, and the reader can

verify that these are the four listed reflections.

Exercise 4. A postmarking machine is a machine that is fed square envelopes on a conveyor belt.

While the envelope is transported on the belt, a robot arm can turn it a quarter turn clockwise or

“flip” it over (in a fixed way) so that the front of the envelope faces the top. The “treatment” of an

envelope consists in putting a postmark over a stamp in a fixed corner (the upper right one on the

front).

Show that the machine can postmark an envelope with a stamp in the upper right corner. What is

the maximal number of actions the robot arm needs to perform?

The proof of 1.4 shows that all symmetries of the square can be made by repeatedly

composing r and sx. The group D4 of symmetries of the square is said to be generated

by r and sx.

A complication with the symmetry group D4 that does not occur with the sym-

metry group V4 of the rhombus is that the order of the composition now plays an

important role. For example, r ◦ sx and sx ◦ r are not the same reflection in D4.

Anyone who has ever done matrix calculations will not be surprised, but those who

have only done arithmetic with real numbers must keep this in mind. We say that the

elements r and sx of D4 do not commute.

By writing the elements of D4 as risjx with i ∈ {0, 1, 2, 3} and j ∈ {0, 1}, we can

multiply elements in D4 quickly. The rules

(1.5) ri1 · ri2 = ri1+i2 and sj1x · sj2x = sj1+j2x

are obvious. We take the exponents modulo 4 and modulo 2, respectively. The “not

commuting” of r and sx is expressed by the rule

(1.6) sx ◦ ri = r−i ◦ sx,

left as an exercise to the reader to deduce from the relation (ri ◦ sx) ◦ (ri ◦ sx) = id.

(After all, ri ◦ sx is a reflection and therefore has order 2.) Note that the elements sx
and r2 = h, which we know from V4, do commute.

12
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Exercise 5. Write the product sx ◦ r ◦ sx ◦ r2 ◦ r−1 ◦ sx in the form risjx.

As with the rhombus, we can denote the symmetries of the square using their action

on the vertices. In the cycle notation already suggested for the rhombus, we then get

r0 = id = (A), sx = (BD),

r = (ABCD), r ◦ sx = sy=x = (AB)(CD),

r2 = h = (AC)(BD), r2 ◦ sx = sy = (AC),

r3 = r−1 = (ADCB), r3 ◦ sx = sy=−x = (AD)(BC).

Within a cycle, the symmetry maps each point onto the next point of the cycle, and

the last point is mapped onto the first one. For example, (ABCD) represents the

permutation A 7→ B 7→ C 7→ D 7→ A. Points that remain in place are not mentioned

in the notation—except in the case of the identity, which we write as (A).

▶ Permutations of Four Elements

We can view the sets V4 and D4 we have looked at as subsets of the set S4 of all

permutations of the four points in the set {A,B,C,D}. As is well known, a permutation

of a set is a bijective map from the set to itself, and for the set {A,B,C,D}, there
are 4! = 24 distinct permutations. The cycle notation we just introduced gives us a

compact way to write them down.

Exercise 6. Write the 24 elements of S4 in cycle notation and determine their orders.

The inclusions V4 ⊂ D4 ⊂ S4 lead to a divisibility of the sets’ cardinalities 4, 8, and

24. Moreover, the order of an element in each of the sets V4, D4, and S4 turns out to

always be a divisor of the number of elements of the set. In 4.9, we will see that these

are general properties of group inclusions and orders.

On the set S4, just as on V4 and D4, we have a natural composition of elements.

After all, the “product” of two permutations is also a permutation. We write α ◦ β,
or αβ for short, for the composition of the permutations α and β; we also call this the

product of α and β. Note that αβ means: first apply β, then α. As we have seen, αβ

and βα are not always the same.

Exercise 7. Make a multiplication table for D4. How does such a table show that there are elements

that do not commute?

We already observed that the elements r = (ABCD) and sx = (BD) generate all

symmetries in D4: this means that every symmetry can be obtained by repeatedly

applying r and sx. We can ask whether the set S4 can similarly be generated using a few

elements; this is, for example, interesting for those who want to build a sorting machine.

The number of possible choices is vast. We can, for example, take the transpositions

in S4. By definition, these are permutations that interchange two elements and leave

all others in place. The number of such elements of S4 is
(
4
2

)
= 6.

1.7. Theorem. Let σ be a permutation of a finite set X. Then σ is a product of

transpositions.

13
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Proof. Denote the elements of the set by 1, 2, 3, . . . , n, where n is the number of ele-

ments ofX. We carry out the proof using induction on n. For n ≤ 1, the permutation σ

is the identity, which is the product of 0 transpositions.

Now, suppose that every permutation in a set with n − 1 elements is a product

of transpositions. If our permutation satisfies σ(n) = n, then σ can be viewed as a

permutation of a set with n− 1 elements, and we are done. So assume σ(n) = k ̸= n.

Then the product (k n) ◦ σ of σ and the transposition (k n) is a permutation that

leaves n in place (why?), and we just saw that this means that (k n) ◦ σ is a product

of transpositions. If we multiply this product by (k n), then we have a product of

transpositions equal to (k n) ◦ (k n) ◦ σ = σ.

Exercise 8. Show that every element of S4 can be written as a product of no more than three

transpositions.

The proof of Theorem 1.7, in which we took n arbitrary and not n = 4, shows that it can

sometimes be easy to prove a more general statement. This is also called simplification

by generalization. A slightly more subtle example of this phenomenon is given in the

last exercise of this section.

▶ Spatial Symmetries

We introduced V4 and D4 as symmetry sets, which leads to the question of whether the

abstract “permutation set” S4 of {A,B,C,D} can also be interpreted in this way. It is

not so easy to do this using points in the plane, but it can easily be done using spatial

symmetries. Such symmetries, generally more difficult to visualize and classify than

plane symmetries, are extensively studied in crystallography. The occurring symmetry

sets are called crystallographic groups.

If we view the points A, B, C, D as vertices of a tetrahedron, then S4 acts as the

symmetry set of the tetrahedron. After all, as every symmetry is uniquely determined

by its action on the vertices, the symmetries of the tetrahedron form a subset of S4.

As compositions of symmetries are symmetries, by 1.7, it suffices to show that the

transpositions occur as symmetries.

A

B

C

D

For example, to make the transposition (AB), we take the plane that cuts AB per-

pendicularly through its midpoint. As the triangles ABC and ABD are equilateral,

C and D lie in this plane. If we reflect in this plane, we obtain the symmetry that

interchanges A and B and leaves C in D in place.

The example of the tetrahedron shows that we can use “abstract arguments”

about permutation sets to prove something about the symmetries of a tetrahedron.

14
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Those who do not like such an indirect approach may, of course, also try imagining

what spatial transformation interchanges, for example, the vertices A, B, C, D in a

4-cycle (ABCD).

Exercises.

9. The symmetric difference of two sets A and B is defined as

A∆B = (A ∪B) \ (A ∩B).

Let X be a set with two elements and V the collection of subsets of X. Show that V

is a set with four elements and that the action ∆ gives this set the structure of a Klein

four-group.

10. Show that the set of integers not divisible by 2 or 3 splits up into four residue classes

modulo 12. Is the natural multiplicative structure on these four classes that of the

Klein four-group? Answer the same question for the four residue classes of the integers

that are not divisible by 5.

11. Show that the equation 3x2 + 2 = y2 has no solutions with x and y odd by writing

x = 2a+ 1 and y = 2b+ 1 and using a parity argument. (Parity argument is a proper

word for “even/odd consideration”.)

12. Show that the equation 3x2 + 2 = y2 has no integer solutions by calculating modulo 3.

Also prove that the equation has no rational solutions.

13. Define V4 and V
′
4 as in Theorems 1.1 and 1.3. Show that there exist exactly six different

isomorphisms V4 → V ′
4 .

14. Give the matrix representations of the elements of D4. Does matrix multiplication lead

to a faster way to multiply the elements of D4 than the rules (1.5) and (1.6)?

15. Determine the symmetry set of an equilateral triangle in the plane. Do these symmetries

commute under composition?

16. Can every permutation of {A,B,C,D} also be obtained from the transpositions (AB),

(BC), and (CD)? Or from the transposition (AB) and the 4-cycle (ABCD)? If so,

how many multiplications are needed, at most, in these cases to obtain a permutation?

17. Show that the subset H ⊂ D4 generated by the symmetries r ◦ sx and r3 ◦ sx of the

square is a Klein four-group and is not equal to V4 = {id, sx, sy, h}.
[So we cannot speak of the inclusion V4 ⊂ D4.]

18. Determine the subset of S4 generated by the eight 3-cycles in S4. *Can you prove that

your answer is correct?

19. Does there exist a quadrilateral ABCD in the plane with symmetry set S4? Explain.

20. Let n > 2 be an integer. Show that the symmetry set of a regular n-gon about the origin

in the plane consists of 2n elements: the n rotations about the origin by multiples of

2π/n and the reflections in the n lines connecting the origin to a vertex or the midpoint

of an edge.

21. Show that the symmetry set of the unit circle in the plane consists of the rotations

about the origin and the reflections in lines through the origin.

15
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*22. Can the set in the previous exercise be generated by a finite number of symmetries?

23. Determine the symmetry set of the infinite diamond pattern below.

Show that the set can be generated by three reflections.

24. Show that there are exactly 48 spatial symmetries that map a given cube to itself. Do

any two of these symmetries commute?

25. Show that the equation 55x3 + 3 = y3 has no integer solutions.

[Hint: Look at residue classes modulo 7 or 9.]

*26. (A small puzzle after New Year’s Day...) Prove that the equation

1

x1
+

1

x2
+

1

x3
+ · · ·+ 1

x2022
+

1

x2023
= 1

has only finitely many solutions in positive integers xi.
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2 Permutation groups

The sets V4, D4, and S4 from §1 are concrete examples of groups, of which we will

now give a general definition. After that, we will give some details on the important

example of the permutation group.

▶ The Group Axioms

A binary operation or composition law on a set G is a map

G×G −→ G

(a, b) 7−→ a ◦ b,

that is, a function that assigns to each ordered pair (a, b) of elements of G the composi-

tion a◦b of a and b in G. We can use an arbitrary symbol instead of “◦” to denote a◦b,
for example a ∗ b or a#b. However, as there is no advantage to using exotic symbols,

we often simply write ab for a ◦ b and call the composition of a and b the product.

A unit element or identity for a binary operation on G is an element e ∈ G with

the property that for all a ∈ G, we have e ◦ a = a ◦ e = a. Note that there can be only

one such element: if e1, e2 ∈ G are both unit elements, then we have e1 = e1 ◦ e2 = e2.

2.1. Definition. A set G endowed with a binary operation ◦ is called a group if the

following conditions are satisfied:

(G1) The set G contains a unit element e for the binary operation ◦.
(G2) For any three elements a, b, c ∈ G, we have the associative property:

a ◦ (b ◦ c) = (a ◦ b) ◦ c.

(G3) For every element a ∈ G, there exists an element a† ∈ G with

a ◦ a† = a† ◦ a = e.

The element a† in (G3), called the inverse of a, is uniquely determined by a. After all,

if a† and a‡ are both inverses of a ∈ G, then by (G1) and (G2), we have

a† = a† ◦ e = a† ◦ (a ◦ a‡) = (a† ◦ a) ◦ a‡ = e ◦ a‡ = a‡.

So from now on, we can speak of the inverse of an element, just as we have the unit

element of the group.

The group axioms (G1), (G2), and (G3) in 2.1 are chosen in such a way that

many “natural examples” satisfy them. The reader can, for example, check that this

includes, in particular, the examples V4, D4, and S4 from the previous section.

Exercise 1. Is the set R of real numbers a group under addition? And under multiplication?

In the multiplicative notation for the group operation, which we will use in this section,

we denote the inverse of a by a−1. We write an for a product a ◦ a ◦ . . . ◦ a of n factors

a and a−n for the n-fold product a−1 ◦ a−1 ◦ . . . ◦ a−1. Note that by the associativity
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(G2), there is no need for parentheses in a product with multiple factors: the outcome

does not depend on any.

We define a0 = e for all a ∈ G, so that for all m,n ∈ Z, the identity aman = am+n

holds. More generally, it is convenient to define the product of zero factors, the empty

product, to be equal to the unit element e.

A product a1a2a3 . . . an of n elements ai ∈ G is sometimes written as
∏n

i=1 ai. The

order of the factors of such a product is important: the product ab is not, in general,

equal to ba. If it is, then we say that a and b commute. For non-commuting elements

a and b, the products (ab)n = ab ab ab . . . ab and anbn = a a a . . . ab b b . . . b may be

completely different.

Groups in which all elements commute with one another are called abelian groups,

after the Norwegian mathematician Niels Henrik Abel2 (1802–1829).

Exercise 2. Show that the inverse of the product ab of two elements a and b is equal to

(ab)−1 = b−1a−1.

This “shoe-sock rule” says that to undo putting on socks and shoes, you must first take off your shoes

and then your socks: the order is reversed.

▶ Orders of Groups and Elements

The number of elements of G, which can be either finite or infinite, is called the order

of G and denoted by #G. The trivial group, which consists of only the unit element,

has order 1 and is therefore the “smallest possible group.” Notation: G = 1.

The order of an element a ∈ G is the least positive number n such that an = e.

If such an n does not exist, then we say that a has infinite order. In a finite group, all

elements have finite order. We have the following more precise statement.

2.2. Proposition. Let G be a group and a ∈ G an element.

1. If a has infinite order, then all elements in the sequence (ak)k∈Z of integer powers

of a are different.

2. If a has finite order n, then there are exactly n different powers of a, and the

sequence (ak)k∈Z of integer powers of a is periodic with period n.

Proof. Suppose that there exist two distinct values i, j ∈ Z with, say, i > j, such that

ai = aj. If we multiply either side by a−j, then we obtain ai−j = aj−j = a0 = e, so a

has finite order. This proves (1).

If a has finite order n, then the argument above shows that the powers ai for

i = 0, 1, 2, . . . , n − 1 are all different. For i ∈ Z, the equality ai+n = aian = aie = ai

holds, so the sequence of powers of a is periodic with period n, and there are exactly

n different powers.

An element a ∈ G of finite order is also called a torsion element: the powers of a

“rotate in a circle.” In a finite group, all elements are torsion.

Exercise 3. For a of order n, which power in the sequence e, a, a2, . . . , an−1 is the inverse of a?
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In the examples in the previous section, we frequently used the three group axioms

(G1), (G2), and (G3). As the proofs of 1.1, 1.4, and 2.2 show, we often use them in

the form of the equivalence

(2.3) ax = b⇐⇒ x = a−1b

for elements a, b, x ∈ G. This equivalence allows us to take an identity in a group and

move elements to the other side of the equal sign. In fact, what we do—and that is the

proof of (2.3)—is multiply by the same group element on both sides. If we multiply

both sides of the identity ax = b on the left by the element a−1, then we see that

a−1(ax) = (a−1a)x = ex = x is equal to a−1b. Conversely, the identity x = a−1b gives

the identity ax = b by multiplying on the left by a.

It follows from (2.3) that the map λa : G→ G given by x 7→ ax, the left multipli-

cation by a ∈ G, is bijective: for every b ∈ G, there is a unique element x ∈ G sent to

b by left multiplication by a. The inverse of this map is given by left multiplication by

a−1, and by (G2), we have λa ◦ λb = λab.

Exercise 4. Prove the equivalence xa = b ⇐⇒ x = ba−1. Conclude that the right multiplication

x 7→ xa by a ∈ G gives a bijection ρa : G→ G. Prove: ρa ◦ ρb = ρba.

▶ Permutation Groups

All groups in §1 consist of bijections from some set to itself. In the remainder of this

section, we consider the “standard example” consisting of the group of all bijections

from a set to itself.

2.4. Theorem. Let X be a set. Then the set S(X) of bijections X → X endowed

with the composition of maps as its binary operation is a group.

Proof. First, note that composing two bijections X → X gives a bijection. To prove

(G1), note that the identity idX indeed behaves as a unit element for composition:

f ◦ idX = idX ◦f = f for all f ∈ S(X). In this case, the associativity is a general

property of the composition of maps. Namely, for any three maps

X1
f−→ X2

g−→ X3
h−→ X4

between sets, the identity h ◦ (g ◦ f) = (h ◦ g) ◦ f holds. If we take X1 = X2 = X3 =

X4 = X, then we obtain (G2) for S(X). The inverse f−1 of a bijection f ∈ S(X) is

the inverse map in the sense of set theory, which is defined exactly by property (G3):

f ◦ f−1 = f−1 ◦ f = idX .

The group S(X) in 2.4 is a very general example of a group because as Cayley’s theorem

in 5.8 shows, every group G can be seen as a group of bijections from G to itself.

The group S(X) associated with a set X is called3 the permutation group or

symmetric group on X. When X is a finite set of n elements, we denote this group by

Sn. The set S4 of permutations of the set {A,B,C,D} in §1 is indeed the permutation

group S4 on four letters. As we saw, the order of this group is 4! = 24. More generally,
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the permutation group Sn has order n!. After all, for a bijection from a set with n

elements to itself, there are n possibilities for the image of the first element, then n− 1

left for the image of the second element, n − 2 for the third, and so on, until there

is only one possibility for the n-th element. This gives n(n − 1)(n − 2) . . . 2 · 1 = n!

possibilities.

Exercise 5. Show that Sn is not abelian for n ≥ 3.

▶ Cycle Notation

In §1, we introduced a cycle notation for the elements of S4, which is considerably more

practical than giving a complete list of arguments and images. An element σ ∈ S(X)

is called a k-cycle or cyclic permutation of length k if there exist k different elements

x1, x2, . . . , xk ∈ X such that σ is the identity on X \ {x1, x2, . . . , xk} and acts on

{x1, x2, . . . , xk} as the cyclic shift

x1 7−→ x2 7−→ x3 7−→ . . . 7−→ xk−1 7−→ xk

We denote such an element by σ = (x1 x2 x3 . . . xk−1 xk). This notation is unique

up to cyclic shifts because, for example, (x1 x2 x3) and (x2 x3 x1) indicate the same

permutation. A 1-cycle is the same as the identity idX .

Two cycles (x1 x2 x3 . . . xk−1 xk) and (x′1 x
′
2 x

′
3 . . . x′ℓ−1 x

′
ℓ) in S(X) are called

disjoint if no element xi is equal to an x′j. Note that disjoint cycles always commute.

Our introductory section already used the following intuitively clear theorem for

X = {A,B,C,D}.

2.5. Theorem. Let X be a finite set. Then every permutation σ ∈ S(X) can be

written as a product of disjoint cycles.

Proof. We carry out the proof by induction on n = #X. For the trivial group S1,

there is nothing to prove. After all, by our convention on the empty product, the unit

element is equal to the product of zero disjoint cycles. (Those uncomfortable with this

can also write the unit element as a 1-cycle.) In any case, the theorem is correct for

n = 1.

Assume that the theorem is true for sets with fewer than n elements, and take a

permutation σ ∈ S(X) for a set X with n elements. If we choose an x ∈ X, then only

finitely many different elements occur in the infinite sequence x, σ(x), σ2(x), . . ..

Let k > 0 be the least positive number such that σj(x) = σk(x), where j ∈
{0, 1, 2, . . . , k − 1}. Applying σ−j to this equality gives σk−j(x) = σj−j(x) = x, so

by the minimality of k, we have j = 0 and σk(x) = x. The elements of the set

X0 = {x, σ(x), σ2(x), . . . , σk−1(x)} are now distinct, and σ acts on this as the k-cycle

σ0 = (x σ(x) σ2(x) . . . σk−2(x) σk−1(x)).

As σ is a bijection on X that maps the subset X0 ⊂ X onto itself, the complement

X \X0 is also mapped onto itself by σ. As X \X0 consists of n− k < n elements, the
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restriction of σ to this set can be written as a product of disjoint cycles. Multiplying

this product by the cycle σ0, we obtain a presentation of σ as a product of disjoint

cycles.

Exercise 6. Calculate the product (1 2)(2 3)(3 4) . . . (n− 1 n), and use it to deduce 1.7 from 2.5.

To denote the elements of Sn in cycle notation, we must choose a set with n elements.

A standard choice for such a set is {1, 2, 3, . . . , n− 1, n}.

2.6. Example. We can denote an element of S12 by a 2× 12 matrix

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12

5 1 11 10 3 4 7 2 12 6 8 9

)
.

Each column consists of an element and its image. We can find the disjoint cycle

representation of σ by choosing an element, say 1, and looking at its image under

successive applications of σ. We find 1 7→ 5 7→ 3 7→ 11 7→ 8 7→ 2 7→ 1, a cycle of

length 6. Now choose an element outside this cycle, say 4, and repeat the procedure.

We find 4 7→ 10 7→ 6 7→ 4, a 3-cycle. There are still elements outside these cycles

because we have only had 6+ 3 = 9 of the 12 elements. We do not need to write down

the element 7, which stays in place and gives a 1-cycle. If we take 9, we find the 2-cycle

(9 12). The result of the calculation is

σ = (1 5 3 11 8 2)(4 10 6)(9 12).

Exercise 7. Show that the element σ ∈ S12 above has order 6, and calculate the different powers

of σ.

Similarly, we can find the disjoint cycle representation of an element given as a product

of non-disjoint cycles, such as τ = (1 4 3 6)(7 1 6)(2 7 6 5) ∈ S7. We determine the

image of 1 under τ by first applying (2 7 6 5) (result: 1), then (7 1 6) (result: 6), and

finally (1 4 3 6) (result: 1). So τ leaves 1 in place. For 2, we find 2 7→ 7 7→ 1 7→ 4,

so τ(2) = 4. Continuing in this way, we get τ(4) = 3, τ(3) = 6, τ(6) = 5, and finally

τ(5) = 2. This gives the 5-cycle (2 4 3 6 5), and as in addition to 1, the element 7 is

also fixed by τ , the cycle τ is equal to this 5-cycle.

Exercise 8. Write the elements σ, τ ∈ S12 given by, respectively,(
1 2 3 4 5 6 7 8 9 10 11 12

9 5 1 11 10 3 4 7 2 12 6 8

)
and

(
1 2 3 4 5 6 7 8 9 10 11 12

7 2 12 6 8 9 5 1 11 10 3 4

)
as products of disjoint cycles, and do the same for στ and τσ.

The disjoint cycle representation of an element σ ∈ Sn is essentially unique: two such

representations can only differ in the order of the cycles and whether they include the

cycles of length 1. The cycles in the disjoint cycle representation of σ correspond to the

orbits the set {1, 2, . . . , n} splits up into under repeatedly applying σ: i and j occur in

the same cycle if and only if i can be mapped to j by repeatedly applying σ. A point

in an orbit of length 1 corresponds to an element left in place by σ and is called a fixed

point of the permutation σ.
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If σ ∈ Sn is a product of t disjoint cycles of lengths k1, k2, . . . , kt, where we also

count the cycles of length 1, then we have k1 + k2 + k3 + . . . + kt = n. We call the

sequence (k1, k2, k3, . . . , kt) the cycle type of σ; the order of the terms does not matter.

A cycle type (k1, k2, k3, . . . , kt) is in fact nothing but a way to write n as a sum of

positive numbers ki. We therefore also call the “splitting” (k1, k2, k3, . . . , kt) of n a

partition of n. For the element σ ∈ S12 in 2.6, the cycle type is (6, 3, 2, 1), which

corresponds to the partition 12 = 6 + 3 + 2 + 1.

Exercise 9. Determine all cycle types that occur in S4 and S5, and for each cycle type, determine

how many permutations there are of this type.

▶ Subgroups, Cyclic Groups

From the example of the group S4 in §1, which contained D4 and V4, we see that a

group can have various subsets that are themselves groups. In such a case, we speak

of subgroups.

2.7. Definition. A subset H of a group G is called a subgroup of G if it satisfies the

following conditions:

(H1) The subset H contains the unit element of G.

(H2) For any two elements a, b ∈ H, we have ab ∈ H.

(H3) For every element a ∈ H, we have a−1 ∈ H.

Condition (H2) says that the restriction of the binary operation G×G→ G to H ×H
has image in H and therefore defines a binary operation on H. By (H1) and (H3),

the subset H contains a unit element and inverses for this binary operation. The

associativity of the binary operation on H follows from the associativity on G. We

conclude that a subgroup H ⊂ G endowed with the binary operation of G is again a

group. Conversely, we can easily see that every subset of a group G that forms a group

when endowed with the binary operation of G is a subgroup of G in the sense of 2.7.

Every group G contains a trivial subgroup H = {e}. We generally denote it by

H = 1 for short. The “whole group” H = G is always a subgroup of G.

Exercise 10. Show that a subset H ⊂ G is a subgroup of G if and only if it satisfies the following

conditions:

(H1’) The subset H is non-empty.

(H2’) For any two elements a, b ∈ H, we have ab−1 ∈ H.

Given one or more elements of a group, there is an easy way to construct the smallest

subgroup that contains those elements.

2.8. Lemma. Let S be a subset of a group G and S−1 = {s−1 : s ∈ S}. Let ⟨S⟩ ⊂ G

be the set of elements that can be written as a finite product of elements s ∈ S ∪ S−1.

Then ⟨S⟩ is a subgroup of G, the smallest subgroup of G that contains every element

of S.

Proof. Let us verify conditions (H1)–(H3) for the subset ⟨S⟩ ⊂ G.

If S is empty, then ⟨S⟩ contains only the empty product, which is equal to e, and

⟨S⟩ is the trivial subgroup of G. In general, (H1) is automatically satisfied.
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If a and b are products of elements s ∈ S ∪S−1, then ab is also such a product, so

⟨S⟩ satisfies (H2). If a = s1s2 . . . st is a product of elements si ∈ S ∪ S−1, then by the

“shoe-sock rule,” a−1 = s−1
t s−1

t−1 . . . s
−1
2 s−1

1 . For every element si ∈ S ∪ S−1, the inverse

s−1
i is also in S ∪ S−1, so we have a−1 ∈ ⟨S⟩, and (H3) is satisfied. We conclude that

⟨S⟩ is a subgroup of G.

Every subgroup H ⊂ G that contains the elements of S contains S−1 by (H3),

and (S ∪ S−1) ⊂ H implies ⟨S⟩ ⊂ H by (H2).

Exercise 11. Show that for S ⊂ G, the set of finite products of elements of S is not necessarily a

subgroup of G. Is it always a subgroup if G is finite?

The subgroup ⟨S⟩ in 2.8 is called the subgroup of G generated by S. If ⟨S⟩ = G, then

we say that G is generated by S or that S is a set of generators of G. A group generated

by a finite set of elements is called finitely generated. Finite groups are always finitely

generated: we can simply take S = G. For small S, such as S = {a} or S = {a, b}, the
braces are generally left out, and ⟨S⟩ is written as ⟨a⟩ or ⟨a, b⟩. So for the subgroups

V4 and D4 of S4 in §1, if we number the vertices A, B, C, D as A = 1, B = 2, C = 3,

and D = 4, then we have
V4 = ⟨(1 3), (2 4)⟩,
D4 = ⟨(2 4), (1 2 3 4)⟩,
S4 = ⟨(1 2), (1 2 3 4)⟩.

Note that the obtained injections V4 → S4 and D4 → S4 depend on a choice of the

numbering of the vertices. See Exercise 48.

Exercise 12. Give an explicit numbering of {A,B,C,D} that leads to injections V4 → S4 and

D4 → S4 with a different image.

A group generated by one element is called a cyclic group. It consists of the integer

powers of the generator. If a ∈ G has infinite order, then by 2.2.1, the cyclic subgroup

⟨a⟩ ⊂ G also has infinite order. If a ∈ G has finite order n, then by 2.2.2, the subgroup

⟨a⟩ also has order n. For example, C4 = ⟨(1 2 3 4)⟩ is a cyclic subgroup of S4 of order 4.

In 4.9, we will see that in a finite group, the order of any subgroup divides the group

order. By considering cyclic subgroups, it follows that the orders of the elements of a

finite group always divide the group order.

Exercise 13. Show that the groups V4, D4, and S4 are not cyclic.

For a subset S ⊂ Sn of more than one element, we often have (in a sense that must

be made precise4) ⟨S⟩ = Sn. See Exercises 54–56 for examples of small sets that

generate Sn.

▶ The Sign Map

We conclude this section by constructing a subgroup An ⊂ Sn called the alternating

group on n elements. The construction relies on assigning a sign ε(σ) ∈ {±1} to a

permutation σ ∈ Sn.
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2.9. Lemma. There exists a unique map ε : Sn → {±1} with the following two

properties:

1) If σ is a transposition, then we have ε(σ) = −1.
2) For any elements σ, τ ∈ Sn, we have ε(στ) = ε(σ)ε(τ).

Proof. If we take σ = τ = id ∈ Sn in (2), then we see that ε always sends the identity

to 1, and we are immediately done for n = 1. For n ≥ 2, we know by 1.7 that every

element can be written as a non-empty product of transpositions, so it is clear that

there is at most one map ε with properties (1) and (2). However, as a given permutation

can be written as a product of transpositions in many different ways, it is not obvious

that such a map exists.

We define ε by looking at the function F : Rn → R given by

F (x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

First, observe that F is not the zero function. For σ ∈ Sn, consider the function

σf : Rn → R given by

(σf)(x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)).

Up to a sign, this function is equal to F , and we define ε(σ) by

σf = ε(σ)F.

If we take σ equal to a transposition (i j), then σf arises from F by replacing the

factor xi− xj in the definition of F by xj − xi. After all, all other factors that contain
xi or xj can be combined pairwise, with one pair per element k ̸= i, j. For every k,

we obtain one of the four pairs below, depending on the position of k with respect to

i and j,

(xi−xk)(xj−xk), (xi−xk)(xk−xj), (xk−xi)(xj−xk), (xk−xi)(xk−xj),

and every one of these factors is invariant under the transposition (i j). This shows

that we have ε(σ) = −1 for a transposition σ.

The relation (στ)(F ) = σ(τF ) easily gives ε(στ)F = ε(σ)ε(τ)F ; it follows that ε

also satisfies (2).

Instead of the sign, we also speak of the parity of a permutation. Permutations σ ∈ Sn
with ε(σ) = 1 are called even, those with ε(σ) = −1 odd. Theorem 1.7 says that every

permutation is a product of transpositions, but its presentation as such a product is

not unique. For example, the 4-cycle (1 2 3 4) can be written as

(1 2 3 4) = (1 4)(1 3)(1 2) = (2 3)(1 2)(1 3)(2 4)(2 3).

However, 2.9 implies that the parity of the number of transpositions in such a presen-

tation is uniquely determined: (1 2 3 4) cannot be written as the product of two, four,
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or six transpositions. Therefore, the parity of a permutation is the same as the parity

of the number of transpositions needed to get this permutation.

For a k-cycle, the parity ε(σ) depends only on k. The identity

(1 2)(2 3)(3 4)(4 5) . . . (k − 1 k) = (1 2 3 4 . . . k − 1 k)

shows that a k-cycle σ ∈ Sn has parity ε(σ) = (−1)k−1. For σ ∈ Sn of cycle type

(k1, k2, k3, . . . , kt), we find

ε(σ) = (−1)
∑t

i=1(ki−1) = (−1)n−t.

The proof of 2.9 also shows that the parity of a permutation σ is also the parity

of the number of inversions induced by σ. An inversion is a pair (i, j) of indices in

{1, 2, . . . , n} for which the inequalities i < j and σ(i) > σ(j) hold.

By the multiplicativity of the sign map stated in 2.9.2, we easily see that the subset

An of even permutations in Sn is a subgroup. First, the identity id ∈ Sn is a product

of zero transpositions and therefore an even permutation, so (H1) is satisfied. For all

σ ∈ Sn, we now have the identity 1 = ε(id) = ε(σσ−1) = ε(σ)ε(σ−1). This shows that

σ and σ−1 have the same sign. Property (H3) follows. Finally, (H2) is also a direct

consequence of the multiplicativity in 2.9.2: the product of two even permutations is

also even.

Later, we will see that the alternating group An occurs in various situations. For

n = 4, we saw in Exercise 1.18 that A4 is generated by 3-cycles.

2.10. Theorem. The alternating group An is the subgroup of Sn generated by the

3-cycles. The order of An is 1
2
· n! for all n ≥ 2.

Proof. The first statement is correct (but trivial) for n ≤ 2. To show for n ≥ 3 that

An is generated by the 3-cycles, we first note that by the identity

(∗) (x y z) = (x y)(y z),

every 3-cycle (x y z) ∈ Sn is an even permutation. As an even permutation is the

product of an even number of transpositions, it now suffices to show that every product

of two transpositions σ, τ ∈ Sn can be written as a product of 3-cycles. For σ = τ , this

is clear because στ = id, and for distinct but not disjoint σ and τ , it follows from (∗).
In the disjoint case, we can also apply (∗) with a sleigh of hand:

(a b)(c d) = (a b)(b c) · (b c)(c d) = (a b c)(b c d).

To see that for n ≥ 2, there are as many even as odd permutations in Sn, we choose a

transposition in Sn (this is where we need n ≥ 2) and consider the bijection Sn → Sn
given by left multiplication by this transposition. This bijection interchanges the even

and odd permutations, so there must be equal numbers of both kinds. As Sn has order

n!, it follows immediately that An has order 1
2
· n!.
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▶ 15 Puzzle

As a recreational application of the notion of parity for permutations, we look at a

well-known little puzzle. The idea is to slide 15 tiles in a square box to move them in

numerical order. If, in the end, the situation is as shown below on the left, then the

puzzle cannot be solved because it is impossible to interchange tiles 14 and 15 through

skillful sliding.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

SO WH ER EI

ST HE PA RI

TY PR OB LE

MH E? ER

To prove that this is impossible, we give the “missing tile” the number 16 and note that

a “move” in this game consists of interchanging tile 16 and an adjacent tile. We are

apparently doing transpositions in the permutation group S16. If, after several moves,

tile 16 is again at the bottom right, then this number of moves was even: after all, in

the given “checkerboard pattern,” tile 16 always moves from a black square to a white

square, and vice versa, so after an odd number of moves, it will never be on a black

square. The product of an even number of transpositions is an even permutation, and

that cannot be the desired transposition (14 15).

Exercise 14. Show that the other puzzle, in which “ER” and “E?” must be interchanged, is solvable.

Many puzzles of this type, such as the well-known Rubik’s cube,5 have considerably

more complicated symmetry groups than the 15 puzzle. However, we can often prove

the impossibility of solving puzzles with certain initial positions in a similar way.
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Exercises.

In the exercises below, G always denotes a group.

15. In each of the following cases, check whether the binary operation ∗ defines the structure
of a group on X and, if so, whether the group is abelian:

a ∗ b = ab for a, b ∈ X = R \ {0},
a ∗ b = a+ b− 1 for a, b ∈ X = R,

a ∗ b = alog b for a, b ∈ X = R>1,

a ∗ b = max{a, b} for a, b ∈ X = R.

16. The commutator of two elements a, b ∈ G is the element [a, b] = aba−1b−1. Show that

we have ab = [a, b]ba, and conclude that a and b commute if and only if the commutator

[a, b] is equal to e.

17. Suppose that we have (ab)−1 = a−1b−1 for all a, b ∈ G. Prove that G is abelian.

18. Suppose that we have (ab)n = anbn for all a, b ∈ G and all n > 1. Prove that G is

abelian.

19. Suppose that we have a2 = e for all a ∈ G. Prove that G is abelian.

20. Show that we have a4 = e for all a ∈ D4 and that D4 is not abelian.

*21. Does there exist a non-abelian group G such that we have a3 = e for all a ∈ G?

22. Show that each element occurs exactly once in every row and column of the group table

(that is, multiplication table) of a finite group.

23. Let G be a group of order 4. Prove: G is either cyclic or the Klein four-group.

24. Let G be a set with an element e ∈ G and a binary operation ◦ that satisfy (G2) and

the following right axioms:

(G1’) For all a ∈ G, we have a ◦ e = a.

(G3’) Every element a ∈ G has a right inverse a† ∈ G with the property a ◦ a† = e.

Prove that G endowed with the binary operation ◦ is a group.

25. Let X be a set. The collection P (X) of subsets of X is called the power set of X. Define

the product of two subset A,B ∈ P (X) as the symmetric difference A∆B. Show that

this makes P (X) into an abelian group.

26. Let X be a finite set. Calculate the order of the group P (X) from the previous exercise

and the orders of the elements of P (X).

27. Prove that every intersection
⋂
iHi of subgroups Hi ⊂ G is a subgroup of G.

28. Show that the union H1 ∪H2 of two subgroups H1 and H2 of G is a subgroup if and

only if we have H1 ⊂ H2 or H2 ⊂ H1.

29. A chain of subgroups of G is a collection {Hi}i∈I of subgroups Hi ⊂ G such that for

any two subgroups Hi, Hj in the collection, we have an inclusion Hi ⊂ Hj or Hj ⊂ Hi.

Show that for a suitably chosen indexation, a finite chain of n ≥ 1 subgroups satisfies

H1 ⊂ H2 ⊂ H3 ⊂ . . . ⊂ Hn−1 ⊂ Hn

and prove, in general, that the union
⋃
i∈I Hi of a non-empty chain is a subgroup of G.
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30. Determine all subgroups of S3. What are the orders of these subgroups?

31. Let G be a finite abelian group and x ∈ G arbitrary. Prove:
∏
g∈G xg =

∏
g∈G g.

Deduce from this that the order of x divides the group order.

[The latter is also true if G is not abelian; see 4.9.]

32. Define σ, τ ∈ S5 by σ = (1 5)(2 4) and τ = (1 2 3 4 5). Determine the commutator

[σ, τ ] and the order of the subgroup H = ⟨σ, τ⟩ ⊂ S5.

33. As in the previous exercise, but now with σ = (1 5).

34. Show that in Definition 2.7, condition (H3) can be left out for finite subsets H ⊂ G.

Also show that this does not hold in general.

35. Let a and b be torsion elements of an abelian group G. Prove: ab is a torsion element.

36. Let X = Z be the set of integers, and let σ, τ ∈ S(X) be given by, respectively,

σ(x) = −x and τ(x) = 1 − x for x ∈ Z. Show that σ and τ have order 2 and that στ

and τσ have infinite order.

37. Give an example of an infinite group G in which every element has finite order.

38. Let G be a finitely generated abelian group in which every element has finite order.

Prove that G is finite.

39. Let G be a finite group and S ⊂ G a subset of order #S > 1
2#G. Prove: G = ⟨S⟩.

40. Let G be a group of order #G < 1000. Prove that G can be generated by fewer than

ten elements.

*41. Let G be an infinite group. Prove: G is finitely generated ⇒ G is countably infinite.

Does the converse hold?

*42. Let X be an infinite set. Prove that S(X) is not finitely generated.

43. Two elements x, y ∈ G are called conjugate if we have y = gxg−1 for some g ∈ G.

Prove that “being conjugate” is an equivalence relation on the set of elements of G.

The equivalence classes are called the conjugacy classes of G.

44. Let G be a finite group. Prove that all conjugacy classes of G have the same number

of elements if and only if G is abelian.

45. Show that conjugate elements of a group have the same order.

46. Show that for τ ∈ Sn arbitrary and a k-cycle σ = (x1 x2 . . . xk) ∈ Sn, the conjugate

τστ−1 is equal to

(τ(x1) τ(x2) . . . τ(xk)).

Deduce that two elements of Sn are conjugate if and only if they have the same cycle

type.

47. Let H ⊂ G be a subgroup and g ∈ G an element. Prove that the subgroup gHg−1 =

{ghg−1 : h ∈ H} conjugate to H is again a subgroup of G.

48. Show that different choices of the numbering in Exercise 12 lead to images of V4 in S4
that are conjugate, and likewise for D4. How many possible images do we get in each

case? *Are these all possible images by group embeddings of V4 and D4 into S4?
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49. Let σ ∈ Sn be a product of t disjoint cycles of lengths k1, k2, . . . , kt. Prove that the

order of σ is equal to the least common multiple of the numbers ki. Conclude that for

every element σ ∈ Sn, the order of σ divides the order of Sn.

50. Let X be a set and H ⊂ S(X) a subgroup. Show that the relation ∼ on X defined by

x ∼ y ⇐⇒ (∃τ ∈ H : y = τx)

is an equivalence relation, and conclude that X is a disjoint union of H-orbits. What

are these orbits if X is finite and H is the cyclic subgroup generated by an element

σ ∈ S(X)?

51. Let X = {1, 2, 3 . . .} be the set of positive natural numbers, and view Sn as a subgroup

of S(X) through its natural action on {1, 2, 3, . . . , n}. Show that H =
⋃
n>0 Sn is a

subgroup of S(X). Is H equal to S(X)?

52. Let n > 1 be an integer, and let f : Sn → R be a non-constant real-valued function on

Sn that satisfies the multiplicativity 2.9.2. Prove that f is the sign map.

53. Are two elements conjugate in the group An if they have the same cycle type?

54. Show that Sn is generated by the set {(1 i) : i = 2, 3, . . . , n}.

55. Show that An is generated by the set {(1 2 i) : i = 3, 4, . . . , n}.

56. Show that for n ≥ 2, the group Sn is generated by (1 2) and (1 2 3 . . . n).

57. Determine the sizes of all conjugacy classes in Sn for n ≤ 6. *Can you formulate and

prove a divisibility property for the sizes of conjugacy classes in Sn?

58. Let p(n) be the number of possible cycle types of elements of Sn. Calculate p(n) for

n ≤ 8.

*59. Prove that the partition function6 in the previous exercise satisfies the power series

identity
∞∑
n=0

p(n)xn =
∏
k≥1

1

1− xk
.

Take p(0) = 1 by definition. *For what real values of x do these expressions converge?

60. Let g(n) be the maximal order of an element of Sn. Determine g(n) for n ≤ 20. *How

could we determine g(n) for large n?7

61. For σ ∈ Sn, define d(σ) as the number of fixed points of σ. Determine the average value

δn =
1

n!

∑
σ∈Sn

d(σ)

of the function d on Sn for n ≤ 5. *Can you prove a general formula for δn?

62. For σ ∈ Sn, define t(σ) as the number of cycles in the cycle type (k1, k2, . . . , kt) of σ.

Determine the average value

τn =
1

n!

∑
σ∈Sn

2t(σ)

of the function 2t on Sn for n ≤ 4. *Can you prove a general formula for τn?
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63. Show that the number of permutations in Sn without fixed points is equal to

n! ·
∑n

k=0
(−1)k

k! . Calculate what fraction of the elements this is for n ≤ 6, and conclude

that when randomly drawing names for Sinterklaas (Saint Nicholas’ Eve) or Secret

Santa8 in a group that is not too small, the probability that no one draws themselves

is approximately equal to 1/e = 0.367879 . . ..

64. Let e1, e2, e3, . . . , en be a standard basis of Rn. For σ ∈ Sn, define the linear map

Mσ : Rn → Rn by
∑

i aiei 7→
∑

i aieσ(i). Prove that the sign ε(σ) of σ is equal to the

determinant det(Mσ).

[The matrix corresponding to Mσ is also called a permutation matrix.]

65. View the group S4 as the symmetry group of the tetrahedron ABCD as in §1. Prove

that the subgroup A4 ⊂ S4 is equal to the group of symmetries of ABCD generated by

rotations, that is, the “physically realizable” symmetries. Conclude that the molecules

below are enantiomers,9 congruent molecules that cannot be transformed into each

other through rotations.

*66. Prove that the 15 puzzle is solvable for half of all possible initial positions. How many

are these? Show that the remaining positions can be transformed into one another

through sliding.

[We say that this puzzle has two orbits under sliding.]

*67. Define what we mean by a “position” of the Rubik’s cube, and calculate the number

of possible positions. Can all these positions be transformed into one another through

“legal rotations”? Can the set of positions be endowed with the structure of a group

so that the set of “solvable positions” becomes a subgroup?
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3 Plane Symmetries

If X is an arbitrary infinite set, then the permutation group S(X) is usually too large

and too “structureless” to be interesting. However, X is often not just any infinite set

but a set with “additional structure.” In this case, instead of studying the group of

all bijections, we study a subgroup of bijections that behave well in some way for the

structure of X.

▶ Plane Geometry

In this section, X is the plane. This case played a central role in Greek mathematics,

and from Euclid (±325–±265 BCE) until well into the 20th century, plane geometry

was the staple of any introduction to mathematics. The plane is the two-dimensional

case of what is nowadays called a Euclidean space, and much of what we treat in this

section can be generalized to the n-dimensional Euclidean space for arbitrary n ≥ 1.

The three-dimensional case, which leads to solid geometry or stereometry, is applied in

crystallography, among other things.

Group theory plays a fundamental role not only in Euclidean geometry, but also in

the variants discovered only in the 19th century such as hyperbolic and elliptic geometry.

With every “geometric space,” we associate the transformation groups of maps from

the space to itself that preserve structural quantities such as distance or volume. This

approach to geometry, presented in 1872 by the German Felix Klein (1849–1925) in his

inaugural lecture in Erlangen, is sometimes referred to as the Erlanger Programm.10 In

the case of the plane, angles and distances are important structural quantities, so we

will look at groups that leave these unchanged (“invariant”).

From the 17th century on, geometry has been increasingly described in terms

of chosen coordinates, allowing us to verify geometric facts through algebraic manip-

ulations. For the plane, such a choice leads to an identification with the set R2 of

ordered pairs of real numbers. We choose a coordinate system consisting of two lines

intersecting perpendicularly in the plane, also called the x1-axis and x2-axis, and call

their intersection point the origin of the plane. Once a unit of length is chosen, every

point in the plane can be written as an ordered pair x = (x1, x2) ∈ R2. Such pairs

can be added coordinatewise; the resulting summation in the plane is also called vector

addition.

Exercise 1. Verify that vector addition gives rise to the structure of a group on R2.

Besides vector addition, we have scalar multiplication, which allows us to multiply the

points of R2 by a real constant. This is summarized in linear algebra by saying that R2

is a vector space over R. Every point is a unique R-linear combination of the points

e1 = (1, 0) and e2 = (0, 1), which together form the standard basis of R2. A point

(x1, x2) ∈ R2 is also denoted by the column vector
(
x1
x2

)
.

Linear algebra shows how to express classic geometric concepts such as the distance

between points and the angle between lines in R2 in terms of the inner product ⟨·, ·⟩ :
R2 ×R2 → R given by the formula ⟨

(
x1
x2

)
,
(
y1
y2

)
⟩ = x1y1 + x2y2.
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Exercise 2. Do the inner product and scalar multiplication give group operations on R2?

▶ Isometries

Well-known examples of maps R2 → R2 from plane geometry are the translation τx
over a vector x ∈ R2, the rotation ρx,α about a point x by an angle α, and the reflection

σℓ in a line ℓ. We came across such maps in §1 when considering symmetry groups of

plane figures such as the rhombus and the square.

O

x

x α

α

τx ρx,α σℓ

The examples mentioned above are all bijections from the plane to itself, with inverses,

respectively, the translation τ−x, the rotation ρx,−α, and the reflection σℓ. Since they

do not necessarily map the origin to itself, they are not, in general, linear. They

are examples of what are called plane symmetries, congruences, or isometries. The

definition is entirely in the spirit of the Erlanger Programm.

3.1. Definition. A plane symmetry or isometry is a map φ : R2 → R2 that preserves

distances:

|φ(x)− φ(y)| = |x− y| for all points x, y ∈ R2.

If we have φ(O) = O for an isometry φ, with O ∈ R2 the origin, then φ is called an

orthogonal map.

We denote the set of isometries of the plane by I2(R) and the subset of orthogonal

maps by O2(R). Note that in 3.1, we do not require explicitly that φ is a bijection. In

3.4, we will see that this is a consequence of the definition and that I2(R) is in fact a

subgroup of the permutation group S(R2).

We first prove that every isometry is the product of a translation, a rotation about

the origin, and possibly a reflection in the x1-axis. The proof, strongly reminiscent of

the proofs of 1.1 and 1.4, relies on a lemma from plane geometry.

We call points in the plane collinear if there is a line in the plane on which they

all lie. If we have φ(x) = x for x ∈ R2 and φ : R2 → R2, then we say that φ leaves

the point x invariant or that x is a fixed point of φ.

3.2. Lemma. 1. An isometry that leaves two distinct points invariant is either the

identity or the reflection in the line through these two points.

2. An isometry that leaves three non-collineair points invariant is the identity.

Proof. Suppose that φ leaves two distinct points a and b invariant. We first show that

for any point x ∈ R2, φ either leaves it invariant or reflects it in the line ℓ through a

and b. Since φ is an isometry, the distances from φ(x) to a and b must, respectively,
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equal |x− a| and |x− b|. As shown in the figure below, x and its mirror image σℓ(x) in

ℓ are the only points that satisfy this. In particular, φ leaves all points on ℓ invariant.

a

b

x

c

First, suppose that φ leaves a point c outside the line ℓ invariant. If x is a point outside

ℓ, then x and σℓ(x) have different distances to c, so φ(x) = x. In this case, φ is the

identity, and we obtain the second statement of the lemma. Now, suppose that φ does

not leave any point outside ℓ invariant. Then we have φ(x) = σℓ(x) for all points x

outside ℓ, and we obtain φ = σℓ.

3.3. Proposition. 1. Every isometry can be written uniquely as a product τψ of a

translation τ and an orthogonal map ψ.

2. An orthogonal map is either a rotation about the origin or the product of a rotation

about the origin and a reflection in the x1-axis.

Proof. We begin with the last statement. Let ψ be an orthogonal map and a a point

on the x1-axis different from the origin O. Then ψ(a) is a point on the circle with its

center at the origin and radius |a|, so there exists a rotation ρ about O with ρ(a) = ψ(a).

The isometry ρ−1ψ now leaves O and a invariant, so by 3.2.1, the map ρ−1ψ is equal

to either the identity or the reflection σ in the x1-axis. In the first case, ψ = ρ is a

rotation about the origin; in the second case, the relation ρ−1ψ = σ gives the identity

ψ = ρσ, so that ψ is the product of a reflection in the x1-axis and a rotation about the

origin. In particular, this shows that orthogonal maps are bijections.

Now, let φ be an arbitrary isometry and τ = τφ(O) the translation over φ(O).

Then ψ = τ−1φ leaves the origin invariant, so ψ is an orthogonal map, and φ = τψ is

a product of the required kind.

Suppose that there exist translations τ1, τ2 and orthogonal maps ψ1, ψ2 with

τ1ψ1 = τ2ψ2. Since translations and orthogonal maps are bijections, they have inverses,

and by multiplying the previous identity successively on the left by τ−1
2 and on the right

by ψ−1
1 , we obtain τ−1

2 τ1 = ψ2ψ
−1
1 . We have a translation on the left and an orthogonal

map on the right. Since the identity is the only translation that is orthogonal, we

find that τ−1
2 τ1 = id = ψ2ψ

−1
1 , and so τ1 = τ2 and ψ1 = ψ2. Thus, the product

representation φ = τψ found above is unique.

Exercise 3. Show that every isometry can be written uniquely as a product φ = ψτ with ψ an

orthogonal map and τ a translation. Does this give the same τ and ψ as in 3.3.1?

The product representation φ = τψ will prove to be useful in various situations.

3.4. Corollary. The set I2(R) of plane symmetries forms a group under composition,

and O2(R) is the subgroup of linear maps in I2(R).
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Proof. It follows from 3.3 that every plane symmetry is a composition of bijections

R2 → R2 and therefore itself a bijection. Under the inclusion I2(R) ⊂ S(R2), I2(R)

becomes a subgroup of S(R2) in the sense of 2.7: the identity is an isometry, the

composition of two isometries is also an isometry, and if a bijection preserves distances,

then so does its inverse. Similarly, we can see that the subset O2(R) ⊂ I2(R) of

isometries that preserve the origin is a subgroup of I2(R). By 3.3.2, every orthogonal

map is a product of linear maps and therefore linear. Conversely, a linear map in I2(R)

leaves the origin invariant and is therefore orthogonal.

3.5. Corollary. For an isometry φ and points x1, x2, . . . , xn ∈ R2, we have

φ

(
x1 + x2 + . . .+ xn

n

)
=
φ(x1) + φ(x2) + . . .+ φ(xn)

n
.

Proof. It is admittedly intuitively clear that isometries “preserve averages” in the

sense of this corollary, but this is not an immediate consequence of Definition 3.1.

However, we can observe that the desired identity is correct for a linear map and also

for a translation. If we apply these special cases successively, we see that the identity

holds for every composition φ = τψ in 3.3.1.

▶ The Orthogonal Group

The orthogonal group O2(R) of linear plane isometries consists of two types of elements.

As matrices, the rotations about O in O2(R) are of the form

ρα =

(
cosα − sinα

sinα cosα

)
,

where α is the rotation angle. The remaining elements of O2(R) follow from this by

multiplication by the reflection σ = ( 1 0
0 −1 ). This gives matrices of the form

ρασ =

(
cosα sinα

sinα − cosα

)
.

The map ρασ sends the line ℓ at an angle α/2 to the positive x1-axis to itself; it is the

reflection in ℓ.

Exercise 4. Verify this using a sketch.

For every rotation ρ ∈ O2(R), the reflection ρσ is of order 2 and therefore equal to its

inverse: (ρσ)−1 = ρσ. Since we also have (ρσ)−1 = σ−1ρ−1 = σρ−1, we find that

(3.6) ρσ = σρ−1,

an extremely useful rule that we already came across in §1 (for Exercise 5), using Latin

letters instead of Greek ones. It shows that the reflection σ does not commute with all

rotations. Together, the relation ρασ = σρ−α in (3.6) and the “commutativity relation”

ραρβ = ρβρα suffice to do arithmetic in O2(R) without ever using matrices.
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Exercise 5. Deduce (3.6) using a sketch or an explicit matrix multiplication. Does the same identity

hold if we replace σ with an arbitrary reflection in O2(R)?

As for the permutation group Sn, we have a sign map O2(R) → {±1} for the or-

thogonal group O2(R); this sign map sends each map in O2(R) to the determinant of

the corresponding matrix. The orthogonal maps of determinant 1 are the rotations;

those of determinant −1 are the reflections. They are called, respectively, orientation-

preserving and orientation-reversing maps.

Exercise 6. Try to explain these names. What is the connection to Exercise 2.64?11

As in the case of the alternating group An ⊂ Sn, it follows from the multiplicativity

of the determinant that the orientation-preserving orthogonal maps form a subgroup

O+
2 (R) ⊂ O2(R). This subgroup consists of the rotations about O.

▶ Plane Symmetry Groups

The orthogonal group, which already appears implicitly in Exercise 1.21, is the sym-

metry group of the unit circle in the plane. If we define, very generically, a plane figure

as a subset F ⊂ R2, then we have the following definition of the symmetry group of F .

3.7. Definition. Let F ⊂ R2 be a plane figure. The subgroup

Sym(F ) = {φ ∈ I2(R) : φ[F ] = F}

is called the symmetry group of the figure F .

Note that the set Sym(F ) in 3.7 is indeed a subgroup of I2(R) and therefore itself also

a group. In §1, we already encountered the special cases where F is a rhombus or a

square with the origin as its center. For F = {O} , the group Sym(F ) is the orthogonal

group O2(R).

Exercise 7. If in 3.7, we require only an inclusion φ[F ] ⊂ F instead of equality, do we still get a

group?

In §1, we studied the symmetry group D4 of the square. More generally, for arbitrary

n ≥ 2, we have the symmetry group Dn of the regular n-gon. Since for every symmetry

of a regular n-gon, the center is a fixed point by 3.5, we obtain an inclusionDn ⊂ O2(R)

by taking O as the center. The rotations in Dn are now the n rotations about O by

the angles 2kπ/n for integer k. They form a cyclic subgroup Cn ⊂ O2(R) of order n

that is generated by the rotation ρ = ρ2π/n by the angle 2π/n. As in 1.4, we deduce

Dn from Cn by adding the compositions with a reflection in the line through O and a

vertex. This gives the n reflections in the lines through O and a vertex and in the lines

through O and the midpoint of an edge. We sometimes call Dn the dihedral group of

order 2n.
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If we choose a vertex on the x1-axis and let σ be the reflection in the x1-axis, we find

Dn = ⟨ρ, σ⟩ = Cn ∪ σCn
= {ρk : k = 0, 1, 2, . . . , n− 1} ∪ {σρk : k = 0, 1, 2, . . . , n− 1}.

Using relation (3.6), we can now do arithmetic in Dn in terms of ρ and σ.

For n = 1, the group Dn is by definition equal to the group D1 = ⟨σ⟩ of order 2
generated by σ. Its subgroup of rotations is the trivial group C1.

Exercise 8. Show that D1 and D2 are the only abelian dihedral groups.

The groups Cn and Dn are the only examples of finite symmetry groups.

3.8. Theorem. Every finite subgroup of I2(R) is equal to Cn or Dn for a suitable

choice of coordinates.

Proof. Let G ⊂ I2(R) be finite. We first show that there is a point in the plane that

is invariant under all φ ∈ G. Take an arbitrary point x ∈ R2, and look at the orbit

of x under G, that is, the set of images of x under the symmetries in G. Since G is

finite, this orbit is also finite, say equal to {x1, x2, . . . , xn}. The orbit of x is mapped

to itself by the elements of G, and by the bijectivity of symmetries, these maps are

permutations. By 3.5, the “average” of the points in the orbit of x is now a fixed point:

φ

(
x1 + x2 + . . .+ xn

n

)
=
φ(x1) + φ(x2) + . . .+ φ(xn)

n
=
x1 + x2 + . . .+ xn

n
.

If we take this point as the origin, then G becomes a finite subgroup of the orthogonal

group O2(R).

We first determine the subgroup G+ = G ∩O+
2 (R) of rotations in G. Since G+ is

finite, there is a minimal value α ∈ (0, 2π] for which ρ = ρα is contained in G. Let n

be the least positive number such that we have nα ≥ 2π. Then ρn ∈ G+ is a rotation

by nα ∈ [2π, 2π + α), and by the minimality of α, we have nα = 2π, so ρα = ρ2π/n.

After multiplication by a suitable power of ρ2π/n, every other rotation in G+ is of the

form ρβ with 0 ≤ β < 2π/n, and it then follows from the minimality of α = 2π/n

that β = 0 and ρβ = id. We conclude that G+ consists of the powers of ρ2π/n and is

therefore equal to Cn.

If G also contains a reflection, then by taking the reflection axis as the x1-axis, we

obtain σ ∈ G. For every other reflection σ̃ ∈ G, the product σσ̃ = ρ is a rotation in G,

so the reflections in G are the elements σρ with ρ in the subgroup G+ of rotations in G.

We have already seen that G+ is equal to Cn = ⟨ρ2π/n⟩ for some n, so in this case, we

get G = Dn.
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The technique used in the proof of 3.8 to show that the group G+ of rotations is cyclic

occurs in many forms. A variant for integers can be found in 6.2.

Exercise 9. Show that the set C∗ = C \ {0} of non-zero complex numbers forms a group under

multiplication and that every finite subgroup H ⊂ C∗ is cyclic.

There is an analog of 3.8 for symmetries of the three-dimensional space. Somewhat

surprisingly, it turns out that in dimension three, there are not that many more possi-

bilities than in dimension two.12

▶ Sign of an Isometry

We attach a sign to an arbitrary isometry using the decomposition φ = τψ from 3.3.1.

We refer to the orthogonal map ψ in such a decomposition as the linear component

ψ = L(φ) of the isometry φ.

3.9. Proposition. The map L : I2(R) → O2(R) that sends an isometry to its linear

component is multiplicative; that is, we have

L(φ1φ2) = L(φ1)L(φ2) for φ1, φ2 ∈ I2(R).

Proof. Write φ1 = τ1ψ1 and φ2 = τ2ψ2 for the decompositions of φ1 and φ2. Since

translations and orthogonal maps do not, in general, commute, we must put in some

effort to find the decomposition of φ1φ2 = τ1ψ1τ2ψ2.

If τa is the translation over a and ψ is an arbitrary linear map, we have

(ψτa)(x) = ψ(x+ a) = ψ(x) + ψ(a) = (τψ(a)ψ)(x)

for every point x ∈ R2. The resulting relation

(3.10) ψτa = τψ(a)ψ

shows that we have ψ1τ2 = τ ′2ψ1 for some translation τ ′2 and that the desired decom-

position is given by φ1φ2 = (τ1τ
′
2)(ψ1ψ2). In particular, we have L(φ1φ2) = ψ1ψ2 =

L(φ1)L(φ2).

We define the sign map I2(R)→ {±1} by φ 7→ detL(φ). It follows from 3.9 that this

map, as the composition of two multiplicative maps, is itself also multiplicative:

detL(ϕ1ϕ2) = det(L(ϕ1)L(ϕ2)) = detL(ϕ1) · detL(ϕ2).

As for the orthogonal group, we find that I2(R) contains a subgroup I+2 (R) of orien-

tation-preserving isometries, consisting of the isometries with sign 1.

▶ Geometry with Complex Numbers

We can give a description of I2(R) in terms of complex numbers that, at first glance,

looks somewhat different from 3.3 but is, in fact, equivalent to it when we identify the

plane R2 with the complex numbers C in the usual way. The elements of the standard

basis become 1 and i, and the isometries take on the following form.
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3.11. Theorem. The orientation-preserving isometries of the complex plane C are

the maps

φ+
a,b : z 7−→ az + b with a, b ∈ C and |a| = 1,

and the orientation-reversing isometries are the maps

φ−
a,b : z 7−→ az + b with a, b ∈ C and |a| = 1.

Here, z denotes the complex conjugate of z ∈ C.

Proof. Under the identification of R2 with C, the reflection in the x1-axis corresponds

to complex conjugation, the rotation about O by an angle α with multiplication by

the complex number a = eiα of absolute value 1, and the translation over a point b

with the addition z 7→ z+ b. If we write the decompositions in 3.3 in terms of complex

numbers, we find exactly the maps mentioned in the theorem. The map z 7→ az + b is

a composition of a rotation and a translation and therefore has sign 1. Preceding it by

the reflection z 7→ z with sign −1, we obtain the map z 7→ az + b, which thus has sign

−1.

The identification of R2 with C, which unlike most other arguments in this section has

no analog in higher dimensions, can sometimes be used efficiently in plane geometry.

As an application, we prove that the “type” of an isometry is determined as below by

its sign and whether it has a fixed point.

With fixed point Without fixed point

det = +1 rotation true translation

det = −1 reflection true glide reflection

In the column “without fixed point,” the term “true translation” means a translation

over a non-zero vector. Likewise, a true glide reflection is a reflection followed by a

true translation parallel to the reflection axis.

Isometries with a fixed point are orthogonal if we take the fixed point as the

origin. We have already seen that these are rotations and reflections and that we can

distinguish between them using their signs. This gives the first column of the table.

An isometry with sign +1 without fixed point corresponds to a map ϕ+
a,b : z 7→

az + b in 3.11 for which the equation z = az + b has no solution. For a ̸= 1, there is

the solution z = b/(1− a) ∈ C, so we have a = 1, and ϕ+
a,b : z 7→ z + b is a translation.

For b ̸= 0, this has no fixed point.

To see when the map φ−
a,b : z 7→ az + b with sign −1 in 3.11 has a fixed point, we

write a = w2 and note that φ−
a,b is a reflection in the line wR followed by a translation

over b. Since |a| = |w| = 1, we have w = w−1 and can rewrite the equation z = az + b

as

2i · ℑ(z/w) = wz − wz = b/w.
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This equation has a solution if and only if b/w is purely imaginary, which means that

b is perpendicular to the reflection axis wR. For such b, the map φ−
a,b is the reflection

in the line b/2 + wR. More generally, we can write b = b1 + b2 with b1 perpendicular

to wR and b2 ∈ wR. If there is no fixed point, then we have b2 ̸= 0, and φ−
a,b is a

reflection in the line b1/2 + wR followed by a translation parallel to that line. This

proves that our table is correct.

Exercise 10. Use a sketch to check the last argument.

▶ Plane Transformation Groups

To conclude this section, we note that other groups than I2(R) can also be associated

with the plane. In linear algebra, we often consider the set GL2(R) of bijections of the

plane that are linear. We can identify this set with the group of invertible 2×2 matrices

with real coefficients. The notation “GL” is an abbreviation of “general linear.” By

3.4, we have

GL2(R) ∩ I2(R) = O2(R).

If we do not require as in 3.1 that all distances are preserved but instead require that

the ratios between distances are, we obtain the group Sim2(R) of plane similarity

transformations or similarities. The similarities are the maps that transform straight

lines into straight lines and preserve the angles between them.

Finally, if we allow not only compositions of translations and orthogonal maps as

in 3.3.1, but also compositions of translations and arbitrary elements of GL2(R), we

obtain (Exercise 31) the group Aff2(R) of plane affine maps. These are the maps that

transform straight lines into straight lines. There are (Exercise 31) natural inclusions

I2(R) ⊂ Sim2(R) ⊂ Aff2(R),

and every one of these groups consists of bijections of the plane that “leave something

invariant” in the spirit of the Erlanger Programm. For further details, we refer to the

exercises.

Exercises.

11. Show that the set GL2(R) of invertible linear maps R2 → R2 forms a group and that

it consists of the 2 × 2 matrices with non-zero determinant. Is O2(R) a subgroup of

GL2(R)?

12. Does the set Mat2(R) of all real 2× 2 matrices form a group under multiplication? Is

there a natural addition on Mat2(R) that gives it the structure of a group?

13. Let φ : R2 → R2 be a linear map. Prove that the following are equivalent:

1. The map φ is an isometry.

2. For all x ∈ R2, we have |φ(x)| = |x|.
3. For all x, y ∈ R2, the inner product satisfies ⟨φ(x), φ(y)⟩ = ⟨x, y⟩.

14. Show that an isometry leaves angles between lines invariant.

15. Prove that an element of I2(R) conjugate to a translation is itself a translation.
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16. Write the elements of the group D6 ⊂ O2(R) explicitly in matrix form.

17. Show that D2 is “the same” group as the Klein four-group from §1.

18. Determine the symmetry groups of each of the letters in a simple block letter alphabet.

Which group is most common? For each symmetry group you find, can you make a

word that has this symmetry group (as a word!)?

19. Let F be a “word in the plane” in the sense of the previous exercise, and assume that

Sym(F ) is the trivial group. Let G be an arbitrary finite symmetry group. Prove that

F can be extended to a figure F with Sym(F ) = G.

20. Show that every symmetry of a plane figure F gives a bijection F → F , and let f :

Sym(F ) → S(F ) be the corresponding map. Prove that f is injective if and only if F

is not contained in a line in R2. Conclude that for such “true” plane figures, Sym(F )

can be viewed as a subgroup of S(F ).

21. Let F be a plane figure with symmetry group S and α be an isometry. Prove that the

symmetry group of the figure αF = {α(x) : x ∈ F} is equal to the conjugate subgroup

αSα−1 = {ασα−1 : σ ∈ S} of S.

22. Prove that the “structure” of the symmetry group of a figure does not depend on the

choice of coordinates. [First, formulate exactly what this should mean.]

23. Use a sketch to show that the composition of a rotation about O by an angle α ̸= 0

and a translation is again a rotation by α, and determine the new center of rotation.

24. Prove the following theorems from plane geometry. There is always a “direct geometric”

proof and a very short proof using 3.11.

1. The composition of the reflections in two parallel lines is a translation.

2. The square of a glide reflection is a translation.

3. The composition of the reflections in two intersecting lines is a rotation.

4. The composition of two rotations by angles α and −α is a translation.

5. The composition of two rotations by angles α and β ̸= −α is a rotation by α+ β.

25. For the items in the previous exercise, determine the translation vectors (in 1, 2, and

4), the rotation angle (in 3), and the center of rotation (in 5).

*26. Let F ⊂ R2 be a non-empty subset of R2 that is bounded. Prove that for a suitable

choice of coordinates, Sym(F ) is a subgroup of O2(R).

27. Let G ⊂ I2(R) be a group of plane symmetries. Show that the set GT = {ϕ ∈ G :

L(ϕ) = id} of G is a subgroup of G and that it consists of the translations in G; it is

called the translation subgroup. Also show that the point group G = {L(ϕ) : ϕ ∈ G} of
G is a subgroup of O2(R).

*28. A group G ⊂ I2(R) of plane symmetries is called a plane crystallographic group if its

translation subgroup is generated by two independent translations, that is, translations

τx and τy such that x and y form a basis of R2. Prove that for a suitable choice of

coordinates, the point group of a plane crystallographic group is equal to Cn or Dn

with n ∈ {1, 2, 3, 4, 6}.

29. A similarity is a non-constant map ϕ : R2 → R2 that leaves distance ratios invariant:
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for any four points a, b, c, d ∈ R2 with a ̸= b and c ̸= d, we have

|ϕ(a)− ϕ(b)|
|a− b|

=
|ϕ(c)− ϕ(d)|
|c− d|

.

Prove that a similarity multiplies all distances by the same positive factor and that the

set Sim2(R) of similarities is a subgroup of S(R2) that contains I2(R).

30. Show that the analog of 3.11 for similarities is obtained by replacing the condition

|a| = 1 by a ̸= 0.

31. A plane affine map is a map R2 → R2 that can be obtained by composing an invertible

linear map with a translation. Prove that the set Aff2(R) of affine maps is a subgroup

of S(R2) that contains Sim2(R).

32. Show that the determinant map on GL2(R) has a canonical extension to a multiplicative

function on Aff2(R).

33. Define the groups I1(R), Sim1(R), and Aff1(R) of linear isometries, similarities, and

affine maps R → R. Then prove the analogs of 3.3, 3.4, 3.9, and 3.11, and conclude

that the affine group Aff1(R) over R coincides with Sim1(R) and consists of the linear

map x 7→ ax+ b with a, b ∈ R, a ̸= 0.

34. Define a multiplication on the product set C×C∗ by

(b1, a1) · (b2, a2) = (b1 + a1b2, a1a2).

Prove that under this multiplication, C×C∗ forms a group; it is called the affine group

over C. Is this group abelian?
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4 Homomorphisms

It is a general observation in mathematics that for every interesting category of ob-

jects, there is an “associated” type of maps between them. These maps, which, as a

rule, in some way respect the structure of the objects in question, are called the homo-

morphisms, or morphisms for short, in the category.13 For example, the morphisms in

linear algebra are the linear maps, and those in topology are the continuous maps.

▶ Homomorphisms, Isomorphisms, Automorphisms

For groups, where the structure on the underlying set is given by a group operation, it

makes sense to look at maps that respect that operation.

4.1. Definition. A homomorphism from a group G to a group G′ is a map f : G→ G′

such that for any two elements x, y ∈ G, the identity

f(xy) = f(x)f(y)

holds. A bijective homomorphism is called an isomorphism.

The set Hom(G,G′) of homomorphisms from G to G′ always contains the trivial ho-

momorphism, which sends all elements of G to the unit element e′ ∈ G′. Sometimes,

this is the only homomorphism from G to G′.

If f : G → G′ is an isomorphism, we write f : G
∼−→ G′ and say that the groups

G and G′ are isomorphic. Notation: G ∼= G′. In this case, G and G′ have “the same

group structure.”

We have already seen several examples of isomorphisms. In §1, we observed that

the symmetry group V4 of the rhombus is isomorphic to the multiplicative group

{1, 3, 5, 7} of odd residue classes modulo 8. In this case, every bijection that sends

the unit element id ∈ V4 to 1 is an isomorphism.

The subgroupD1 = ⟨σ⟩ ⊂ O2(R) of order 2 generated by the reflection σ in the x1-

axis is isomorphic to the sign group {±1}. The determinant map gives an isomorphism

det : D1
∼−→ {±1}. The subgroup C2 ⊂ O2(R) generated by the half turn is also

isomorphic to {±1}. However, the determinant map det : C2 → {±1} is the trivial

homomorphism and therefore not an isomorphism.

Exercise 1. Prove that all groups of order 2 are isomorphic. Are all groups of order 3 also isomorphic?

Examples of homomorphisms from the previous sections are the sign map ε : Sn →
{±1} in 2.9, the linear component map L : I2(R)→ O2(R) in 3.9, and the determinant

map det : O2(R) → {±1}. The composition det ◦L : I2(R) → {±1} also gives a

homomorphism, the sign map for isometries. More generally, it is easy to check that

the composition of a homomorphism G → G′ and a homomorphism G′ → G′′ gives a

homomorphism G→ G′′.

The homomorphisms G→ G from a group G to itself are called endomorphisms.

The group Hom(G,G) is also denoted by End(G). For abelian groups G, the map

x 7→ xn is an endomorphism of G for every integer n. For non-abelian groups G, we

42



Algebra I– §4

obtain interesting examples of endomorphisms by considering the conjugation maps

σg : x 7→ gxg−1 for g ∈ G. For σg, the homomorphism property stated in 4.1 follows

from the identity

σg(xy) = gxyg−1 = gxg−1 · gyg−1 = σg(x)σg(y).

Bijective endomorphisms G → G are called automorphisms of G. The conjugation

map σg, whose inverse is the conjugation map σg−1 , is an example of one. The auto-

morphisms of G are the isomorphisms from G to itself; we can see them as abstract

“symmetries” of the group G. Given this analogy, it should come as no surprise that

the set Aut(G) of automorphisms of G forms a group under composition, the automor-

phism group of G. A useful exercise for the reader who is still hesitant about so much

abstraction is to check that Aut(G) indeed satisfies all group axioms.

Exercise 2. Let G be a group for which End(G) is a group under composition. Prove: G = 1.

▶ Additive Notation

In the homomorphism property in 4.1, the multiplication xy takes place in G and the

multiplication f(x)f(y) in G′. If the group operations in G and G′ are not denoted the

same way, the identity looks less “symmetric.”

The only other common way to denote a group operation is the additive notation.

This notation is only used for abelian groups. In the additive notation, we write a sum

x+ y instead of a product xy, and the inverse x−1 of x is −x, also called the opposite

of x. More generally, the notation for xn with n ∈ Z is nx. Instead of a unit element,

additively, we prefer to speak of the zero element of the group and write it as 0.

As already noted, the choice of the symbol used to indicate the group operation is

basically irrelevant, and we can denote abelian groups both additively and multiplica-

tively. However, many abelian groups have had a standard notation for their group

operation since Euler (1707–1783). The best-known examples are the additive groups

Z, Q, R, and C of, respectively, integer, rational, real, and complex numbers. No one

will ever imagine using a symbol other than + for the addition in these additive groups,

if only because a product operation is also defined on these sets. If we omit the zero

element from the sets Q, R, and C, the “usual” multiplication gives the structure of

a group. The corresponding groups Q∗, R∗, and C∗ are the multiplicative groups of,

respectively, rational, real, and complex numbers.

Exercise 3. Are there subsets Z∗ ⊂ Z\{0} on which multiplication induces the structure of a group?

Is there a largest one?

Well-known examples of homomorphisms in analysis are the exponential map exp :

R → R∗ given by x 7→ ex and the logarithm log : R>0 → R given by x 7→ log x. The

homomorphism property is then written as ex+y = exey and log(xy) = log x+ log y.

▶ Kernel and Image

Since a homomorphism respects the group operation, it must send a unit element to a

unit element and preserve inverses.
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4.2. Lemma. For a homomorphism f : G→ G′, we have

1. f(e) = e′, with e ∈ G and e′ ∈ G′ the unit elements;

2. f(x−1) = f(x)−1 for all x ∈ G.

Proof. Using the equivalence (2.3), it easily follows from the identity f(e) = f(ee) =

f(e)f(e) that f(e) = e′. For x ∈ G, we then have f(x)f(x−1) = f(xx−1) = f(e) = e′,

and so f(x−1) = f(x)−1.

In the previous sections, we constructed subgroups An and I+2 (R) using the sign maps

Sn → {±1} and I2(R)→ {±1}. This construction turns out to be very general: every

homomorphism f : G → G′ leads to subgroups ker(f) ⊂ G and f [G] ⊂ G′ called the

kernel and the image of f .

4.3. Theorem. For a homomorphism f : G→ G′,

1. the kernel ker(f) = {x ∈ G : f(x) = e′} of f is a subgroup of G;

2. the image f [G] = {f(x) : x ∈ G} of f is a subgroup of G′.

Proof. Let us check properties (H1)–(H3) from 2.7 for ker(f). The kernel ker(f)

contains e by 4.2. For x, y ∈ ker(f), we have f(xy) = f(x)f(y) = e′e′ = e′, so we

have xy ∈ ker(f). For x ∈ ker(f), we have f(x−1) = f(x)−1 = e′−1 = e′, so also

x−1 ∈ ker(f), and we are done.

The proof of (2) is similar. Since e′ = f(e) ∈ f [G], we have (H1). The identity

f(x)f(y) = f(xy) gives the closure condition (H2), and (H3) follows from f(x)−1 =

f(x−1) ∈ f [G].

In the main result of this section, the isomorphism theorem 4.10, we will see that there

is a direct relation between the kernel and the image of a homomorphism.

Exercise 4. Prove that for a homomorphism f : G→ G′ and subgroups H ⊂ G and H ′ ⊂ G′,

1. the image f [H] = {f(x) : x ∈ H} of H is a subgroup of G′;

2. the inverse image f−1[H ′] = {x ∈ G : f(x) ∈ H ′} of H ′ is a subgroup of G.

As an illustration of 4.3 and the exercise above, consider the determinant map det :

GL2(R) → R∗. This is a homomorphism that sends the group GL2(R) of invertible

real 2× 2 matrices to the multiplicative group R∗ = R \ {0} of non-zero real numbers.

The kernel of this homomorphism is the group SL2(R) of matrices with determinant 1.

The image of the orthogonal group O2(R) ⊂ GL2(R) is the sign subgroup {±1} ⊂ R∗.

The inverse image of the sign subgroup is the subgroup V ⊂ GL2(R) of linear maps

with determinant 1 or −1. The orthogonal group O2(R) is a subgroup of V .

*Exercise 5. Show that V is the subgroup of area-preserving maps in GL2(R).

▶ Injectivity

For a homomorphism f : G → G′ and an arbitrary element y ∈ G′, the inverse image

f−1(y) = {x ∈ G : f(x) = y} of y ∈ G′ is called the fiber of f over y. For elements

y /∈ f [G], the fiber f−1(y) is empty.

The fiber over the unit element e′ ∈ G′ is the kernel of f , which is a subgroup

of G. We can tell from this fiber whether f is injective.
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4.4. Theorem. For a homomorphism f : G→ G′, we have

f is injective ⇐⇒ ker(f) = {e}.

Proof. For elements g1, g2 ∈ G, by the homomorphism property and 4.2, we have

(4.5) f(g1) = f(g2)⇐⇒ f(g1)
−1f(g2) = e′ ⇐⇒ f(g−1

1 g2) = e′ ⇐⇒ g−1
1 g2 ∈ ker(f).

If ker(f) = {e}, it follows from the last identity that g1 = g2, so f is injective. Con-

versely, for an injective homomorphism f , we clearly have ker(f) = {e}.

4.6. Example. The real exponential map exp : R→ R∗ is an injective homomorphism

with kernel ker(exp) = {0}. By Euler’s formula ea+bi = ea(cos b+ i sin b), the complex

exponential map exp : C→ C∗ has kernel 2πiZ = {2kπi : k ∈ Z} and is therefore not

injective.

Exercise 6. Are both exponential maps above surjective?

▶ Cosets

Theorem 4.4 says that if the fiber N = ker(f) over the unit element consists of one

element, then all non-empty fibers consist of one element. By taking a closer look at

(4.5), we can show that the non-empty fibers are always “as large” as the kernel. After

all, if we fix the element g1 in (4.5) and check what elements g2 ∈ G are in the fiber

over f(g1), we see that these are the g2 ∈ G for which we have g−1
1 g2 = n ∈ N , that

is, g2 = g1n with n ∈ N . In other words, the fiber of a homomorphism f over a point

f(g) in its image is the set

gN = {gn ∈ G : n ∈ N} = {x ∈ G : x = gn for some n ∈ N}.

Such a set is called a left coset of the subgroup N ⊂ G. The left multiplication

λg : G→ G by g is a bijection that maps N onto the coset gN . In the case where N is

finite, this means that all cosets gN have the same number of elements. For infinite N ,

the existence of bijections between the cosets of N means that they are all “equal in

size” in the sense of set theory: they all have the same cardinality.

The elements of G are apparently neatly distributed over the different cosets of

N = ker(f). In the case where f is the sign map ε : Sn → {±1}, we already encountered
this equal distribution in 2.10: for n > 1, the group Sn splits up into a subgroup An of

even permutations and a left coset (1 2)An of odd permutations; each class gets half,

namely n!/2, of the elements. The symmetry group Dn of the regular n-gon, which

like every plane symmetry group admits a sign map, splits up into a subgroup Cn of n

rotations with sign +1 and a left coset σCn of n reflections with sign −1.
The name of the Frenchman Joseph Louis Lagrange (1736–1813) is associated with

the equal distribution of the group elements over the cosets of a subgroup. Take an

arbitrary subgroup H of a group G, and consider the collection G/H of left cosets of

H in G, that is, the collection of subsets of G of the form

gH = {gh : h ∈ H}.
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If two cosets g1H and g2H have a common element g1h1 = g2h2, we have g1H =

g1h1H = g2h2H = g2H. So distinct left cosets are always disjoint, and since every

element g ∈ G lies in a left coset of H (for example, in gH), we see that G is a disjoint

union of the left cosets in G/H. We have

(4.7) g1H = g2H ⇐⇒ g−1
1 g2 ∈ H.

Exercise 7. Show that the relation g1 ∼ g2 ⇐⇒ g−1
1 g2 ∈ H is an equivalence relation on G and that

the equivalence classes for this relation are the left cosets of H in G.

The map G → G/H from the group G to the set G/H given by g 7→ gH is called the

canonical or natural map. The number of distinct left cosets of H in G is the index

[G : H] = #(G/H) of H in G. For infinite G, this index can be infinite. If G is finite,

the index is also finite, and the order of G can be found by multiplying the index by

the number of elements per coset.

4.8. Lagrange’s theorem. Let G be a finite group and H ⊂ G be a subgroup. Then

we have

#G = [G : H] ·#H.

The graphically inclined can represent the location of a subgroup in a group schemat-

ically in the following way: a subgroup is a “building block” H that, together with its

“translates” gH, neatly covers the group G. Those who want to draw a “real” example

can take G = D7 and H = ⟨σ⟩, the subgroup generated by a reflection σ.

H g1H g2H . . . giH . . . . . .

Theorem 4.8 explains the various divisibility relations for the orders of elements and

subgroups we encountered in §1 and §2. In general, we have the following.

4.9. Corollary. For a finite group G,

1. the order #H of a subgroup H ⊂ G divides #G;

2. the order of an element x ∈ G divides #G.

Proof. The first statement follows immediately from 4.8. For (2), we take H = ⟨x⟩
and note that the order of the subgroup ⟨x⟩ is equal to the order of the element x.

Exercise 8. Prove that every group of prime order #G = p is isomorphic to the cyclic group Cp.

▶ The Isomorphism Theorem

We have seen that for a homomorphism f : G → G′ with kernel N = ker(f), the set

G/N of left cosets of N consists of the fibers of f over the points of the image of f . So

we have a bijection G/N ↔ f [G] that sends the coset gN to the element f(g) ∈ f [G].
Now, by 4.3, the image f [G] is a subgroup of G′ and so itself a group. By transport

of structure, we conclude that G/N apparently also has the structure of a group. This

observation is one of the basic theorems in group theory.
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4.10. Isomorphism theorem. Let f : G → G′ be a homomorphism with kernel N ,

and define a binary operation on G/N by setting g1N · g2N = g1g2N . This endows

G/N with the structure of a group, and the map

f : G/N
∼−→ f [G]

given by gN 7→ f(g) is a group isomorphism.

Proof. Since we already know that f : G/N → f [G] is a bijection from G/N to

f [G], we only need to check that the product class g1N · g2N = g1g2N in G/N is the

coset corresponding to the product f(g1)f(g2) ∈ f [G]. The desired relation f(g1g2) =

f(g1)f(g2) is precisely the homomorphism property of f .

The isomorphism theorem shows that the image of a homomorphism is determined, up

to isomorphism, by its kernel. This is the fundamental homomorphism theorem, and

we will frequently come across it.

4.11. Examples. To get a feel for what Theorem 4.10 tells us, we give three examples.

First, take G = G′ = R2, and let f : R2 → R2 be the map given by (x, y) 7→ (0, y).

This is a linear map, so certainly a homomorphism; it describes the projection of the

plane onto the y-axis. The kernel of this map is the subgroup N = {(x, 0) : x ∈ R} of
points on the x-axis, and the image is the subgroup f [G] = {(0, y) : y ∈ R} of points
on the y-axis. The fibers of f are the horizontal lines Ly = {(x, y) : x ∈ R}; these
are the cosets of N in G = R2. The group G = R2 is the disjoint union of the lines

Ly, and each of these lines corresponds to a unique point (0, y) ∈ f [G]. The natural

addition given by f on the set G/N of horizontal lines in G = R2 is the “addition of

y-coordinates” defined by Ly1 + Ly2 = Ly1+y2 . Under the identification Ly ↔ (0, y),

G/N and f [G] are now indeed “the same.”
(0, y)

ker(f) = L0

Ly

f(R2)

1 r

f(C∗)

Cr

ker(f) = C1

As a second example, we take the map f : C∗ → R∗ given by z 7→ |z|. The multiplica-

tivity |z1z2| = |z1||z2| of the absolute value says that this is a homomorphism. The

kernel N of f is the circle group {z ∈ C∗ : |z| = 1} of complex numbers with absolute

value 1. Note that this is indeed a subgroup of G = C∗. The image of f is the subgroup

f [G] = R>0 = {r ∈ R : r > 0} of positive real numbers in R∗, and the cosets of N

in G = C∗ are the sets of complex numbers with given absolute value r > 0. In our

figure, these are the circles Cr about the origin with radius r. We again see that G is a

disjoint union of such circles. Each circle corresponds to a unique radius r ∈ f [G], and
the multiplication on the set G/N of circles obtained from f gives Cr1 · Cr2 = Cr1r2 .

As a group, G/N = {Cr : r ∈ R>0} is again the “same” as the group f [G] = R>0.
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Exercise 9. Make a similar figure for the homomorphism C∗ → C∗ given by z 7→ z
|z| .

As the third and last example, we consider the “abstract” homomorphism

f : G −→ Aut(G)

g 7−→ (σg : x 7→ gxg−1)

that sends g ∈ G to the conjugation map σg : G
∼−→ G defined by σg(x) = gxg−1.

We have already seen that σg is indeed an automorphism of G. The homomorphism

property of f corresponds to the identity σg1g2 = σg1σg2 ∈ Aut(G). For all x ∈ G, we
indeed have

σg1g2(x) = g1g2x(g1g2)
−1 = g1(g2xg

−1
2 )g−1

1 = σg1σg2(x).

The kernel of f is the subgroup

Z(G) = {g ∈ G : gx = xg for all x ∈ G} ⊂ G

of elements of G that commute with all elements of G. The set Z(G) is called the

center of G. The image of f is the subgroup Inn(G) ⊂ Aut(G) of inner automorphisms

of G. In this case, the isomorphism theorem gives an isomorphism

G/Z(G)
∼−→ Inn(G)

that is not easy to visualize. Intuitively, it is clear that there are “more” inner au-

tomorphisms the fewer elements of G commute with all group elements. For abelian

groups, we have Z(G) = G, and G/Z(G) and Inn(G) are both the trivial group. For

G = Sn, we have Z(Sn) = 1 for n ̸= 2 (Exercise 29); in this case, conjugation gives an

isomorphism Sn
∼−→ Inn(Sn).

Inner automorphisms are common. In linear algebra, we encounter them when

writing a linear map given by a matrix A as a matrix with respect to a basis other

than the standard one: if T is the matrix describing the change of basis, then TAT−1

is the new matrix.

More generally, we find inner automorphisms in all sorts of situations involving

a “choice of coordinates.” For the inclusions Sym(F ) → I2(R) in §3 that occur for

distinct choices of a “coordinate system” in R2, we saw this in Exercise 3.21; Exercise

2.48 is a discrete variant of this, and we will see other examples later on (Exercise

5.11). In physics, measurements from different observers are related in a similar way.

▶ Normal Subgroups

The isomorphism theorem shows that for a subgroup H ⊂ G, the set G/H has the

natural structure of a group if H acts as the kernel of a homomorphism f . In fact, 4.10

says that if H is the kernel of the homomorphism f : G → f [G], then f is obtained

by composing a “canonical homomorphism” G→ G/H with an isomorphism. We will

now determine for which subgroups H such a canonical homomorphism G → G/H

exists.
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It turns out that problems only arise when the set G/H of left cosets, on which

we have so far concentrated so asymmetrically, differs from the set H\G of right cosets

Hg = {hg : h ∈ H} of H in G. In the situations where we used left cosets up to now,

as in the definition of the index [G : H] and the proofs of 4.8 and 4.9, we could just

as well have used right cosets—see Exercises 44 and 45. In abelian groups, we have

gH = Hg, and there is no need to distinguish between left and right cosets. In general,

however, the distinction is necessary. For example, if we take the subgroup H = ⟨(1 2)⟩
in G = S3, then we see that the three left cosets

H = {(1), (1 2)}, (1 3)H = {(1 3), (1 2 3)}, and (2 3)H = {(2 3), (1 3 2)}

in G/H are not the same as the three right cosets

H = {(1), (1 2)}, H(1 3) = {(1 3), (1 3 2)}, and H(2 3) = {(2 3), (1 2 3)}

in H\G. We will prove that there exists a quotient group G/H if and only if G/H and

H\G are not different.

4.12. Definition. A subgroup H ⊂ G is called a normal subgroup of G if it has the

following equivalent properties:

1. For every element g ∈ G, we have gH = Hg.

2. For every element g ∈ G, the subgroup gHg−1 = {ghg−1 : h ∈ H} is equal to H.

The equivalence of the two properties above can be seen by applying right multiplication

by, respectively, g−1 and g. The second formulation is nicer because it provides a

good way to think of normal subgroups: they are the subgroups that are mapped to

themselves by all inner automorphisms σg ∈ Inn(G).

Exercise 10. Show that in 4.12.2, it suffices to require that we have the inclusion gHg−1 ⊂ H.

In an abelian group, every subgroup is normal. It turns out that in some other groups,

such as Sn, subgroups are rarely normal. We write H ◁ G to show that a subgroup

H ⊂ G is normal in G.

4.13. Proposition. The kernel of a group homomorphism f : G→ G′ is normal in G.

Proof. For h ∈ ker(f) and g ∈ G, we have f(ghg−1) = f(g)e′f(g)−1 = e′ ∈ G′, so

ghg−1 ∈ ker(f). By 4.12.2 (and Exercise 10), the kernel ker(f) is now normal in G.

We can give an alternative proof, using 4.12.1, by observing that the fiber over

an element f(g), which we described as the left coset gN of N = ker(f), can also be

described as the right coset Ng of N .

It follows from 4.13 that the set G/H only “inherits” the structure of a group from G

for normal subgroups H ◁ G. After all, we want the canonical map G → G/H given

by g 7→ gH to be a homomorphism with kernel H.

4.14. Theorem. Let G be a group and N ◁ G be a normal subgroup of G. Then the

binary operation

g1N · g2N = g1g2N
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defines the structure of a group on the set G/N of cosets of N in G. This makes the

canonical map G→ G/N into a group homomorphism with kernel N .

Proof. We only need to check that the binary operation g1N · g2N = g1g2N is well

defined on G/N . This means that if we have g1N = g′1N and g2N = g′2N , we must also

have g1g2N = g′1g
′
2N . The assumptions imply that we have g′1 = g1n1 and g′2 = g2n2

for some n1, n2 ∈ N , which gives

g′1g
′
2N = g1n1g2n2N = g1g2(g

−1
2 n1g2)n2N.

By the normality of N , we have g−1
2 n1g2 ∈ N . The desired result follows.

Now that we know that “coset multiplication” is well defined on G/N , the group

axioms from 2.1 follow easily. The unit element in G/N is the coset eN = N , and the

inverse of gN in G/N is g−1N . The associativity for G/N is a direct consequence of

the associativity of the multiplication on G.

The map G→ G/N is a homomorphism by the definition of the binary operation

on G/N . The coset gN of N that contains g is only equal to N for g ∈ N , so the

kernel of this homomorphism is N .

It follows from 4.13 and 4.14 that the normal subgroups of a group G are exactly the

subgroups of G that can serve as kernels of homomorphisms. Note that every subgroup

H ⊂ G can serve as the image of a homomorphism: the inclusion map H → G is a

simple example.

▶ Quotient Groups

The formation of the quotient group or factor group G/N of G by N is a fundamental

construction also carried out in linear algebra (“quotient spaces”) and elsewhere in

algebra. We say that we quotient G by N and call the quotient map G → G/N the

canonical homomorphism.

When calculating in G/N , we often write g for the residue class gN of g modulo N .

This notation is only useful when it is clear from the context modulo what normal

subgroup the calculation is being done; if this is not the case, we also write g mod N

for gN . For groups written additively, the residue class of g is denoted by g or g +N .

The element g is called a representative of the residue class gN . In general, there are

many choices for such a representative. Maps on G/N are often defined by saying what

happens to a representative g of gN . It is important always to verify that the given

definition is independent of the choice of representative. If this is the case, then the

map is well defined. We came across this phenomenon in the proof of 4.14 but also

already in the definition of multiplication modulo 8 in §1.

4.15. Examples. We can think of the elements of the quotient group G/N as elements

of G for which we “forget” a “well-chosen” part of the information. If we let N = {±1}
be the sign group in G = R∗, then G/N = R∗/{±1} is the group of real numbers where

we ignore the sign. Only the absolute value of the number remains. More formally,

the map R∗ → R∗ given by x 7→ |x| is a homomorphism with kernel {±1} and image

R>0, and the isomorphism theorem provides an isomorphism R∗/{±1} ∼= R>0.
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Likewise, we can view the quotient group R∗/R>0 as the group of real numbers

“where the size does not matter.” Only the sign remains, and we have an isomorphism

R∗/R>0
∼= {±1}. We obtain it by applying 4.10 to the sign map R∗ → {±1} given by

x 7→ sgn(x).

Now, take G = R, the additive group of real numbers, and Z ⊂ R, the subgroup

of integers. The quotient group R/Z consists of real numbers x whose “integral part is

forgotten.” After all, the additive analog of 4.7 says that two real numbers x, y ∈ R are

in the same residue class in R/Z exactly when their difference y−x is an integer. Every

residue class, which we now write additively as x+Z, contains a unique representative

x − [x] in the half-open unit interval [0, 1). Here, [x] is the largest integer ≤ x, also

called the entier of x.

The situation with R/Z is somewhat reminiscent of the sizes of angles in plane

geometry. The size of an angle is a real number, but in practice, angles that differ by

a multiple of 2π are often seen as equal. We can make this precise by viewing the size

of an angle as an element of the “angle group” R/2πZ. This group is isomorphic to

R/Z because the multiplication x 7→ 2πx gives an isomorphism R/Z
∼−→ R/2πZ.

The “feeling of a circle” given by the angle group R/2πZ can be made precise

using 4.10. By Euler’s formula

eix = cosx+ i sinx,

the homomorphism f : R → C∗ given by eix = cosx + i sinx has kernel 2πZ and

image the circle group T = {z ∈ C∗ : |z| = 1} from 4.11. Theorem 4.10 now gives an

isomorphism R/2πZ
∼−→ T: the angle group “is” a circle group.

Exercise 11. Give an explicit isomorphism R/Z
∼−→ T.

Another well-known example of a quotient group is the additive group Z/nZ of integers

modulo n, where n ≥ 1 is an arbitrary integer. We speak of “doing arithmetic modulo

n.” As the notation suggests, we obtain Z/nZ by quotienting the additive group Z by

the subgroup nZ = {nx : x ∈ Z} of n-tuples. The case n = 60 is, for example, popular

with the Nederlandse Spoorwegen (Dutch Railways), where timetables essentially re-

peat every 60 minutes. The group Z/nZ is a cyclic group of order n generated by the

residue class 1. It is isomorphic to the group Cn from 3.8. We will return in detail to

arithmetic modulo n in §6. Indeed, the multiplication of residue classes also turns out

to be interesting.

Exercises.

In the exercises below, unless stated otherwise, G always denotes a group.

12. Show that for groups, “being isomorphic” is an equivalence relation.

13. Show that the map C∗ → GL2(R) given by a + bi 7→
(
a −b
b a

)
is an injective group

homomorphism.

14. Show that the map G → G given by x 7→ x2 is a homomorphism if and only if G is

abelian.
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15. Show that the map G → G given by x 7→ x−1 is a homomorphism if and only if G is

abelian.

16. Let f : G→ G′ be a homomorphism and x ∈ G be of finite order. Prove: the order of

f(x) divides the order of x.

17. Show that for any two groups G1 and G2, under the componentwise operation (g1, g2) ·
(g′1, g

′
2) = (g1g

′
1, g2g

′
2), the product set G = G1×G2 becomes a group, the direct product.

18. Show that the direct product C2×C2 is a Klein four-group and that C2×C3 is a cyclic

group of order 6.

19. Let S ⊂ G be a subset that generates G and f, g : G → G′ be two homomorphisms

that agree on S. Prove: f = g.

[“A homomorphism is fixed by its values on a set of generators of the group.”]

20. Does there exist an injective homomorphism D6 → S5?

21. Show that there is no injective homomorphism D6 → A5.

22. Let G be a cyclic group generated by x ∈ G. Prove that G is isomorphic to Z if x has

infinite order and to Z/nZ if x has finite order n.

23. Let G be a cyclic group of order n. Prove that for every divisor d of n, the group G

contains exactly one subgroup of order d.

24. Let G be a finite group of even order. Prove: G contains an element of order 2.

[Hint: look at the orbits of the permutation G→ G given by x 7→ x−1.]

25. Show that every endomorphism f ∈ End(Z) is of the form x 7→ kx for some k ∈ Z.

Conclude that f ↔ f(1) gives a bijection End(Z) ↔ Z. Is End(Z) a group under

composition?

26. Show that Aut(Z) is isomorphic to the sign group {±1}.

27. Let G and G′ be isomorphic groups. Prove that the number of isomorphisms G → G′

is equal to the order of the group Aut(G).

28. Do there exist a group G and an endomorphism G → G that is injective but not

surjective? Do there exist a group G and an endomorphism G → G that is surjective

but not injective? Can you take G to be finite in any of the examples?

29. Show that the center Z(Sn) of Sn is trivial for n ̸= 2. What is Z(S2)?

30. Determine the center Z(Dn) of the dihedral group Dn for all n ≥ 1.

31. Determine the center of the matrix group GL2(R).

32. Determine the centers of O2(R) and I2(R).

33. Show that a group G of order #G ≤ 5 is abelian.

34. Suppose that G/Z(G) is cyclic. Prove: G is abelian, and G/Z(G) is the trivial group.

35. Let V4 be the Klein four-group. Prove: Aut(V4) ∼= S3. How does Exercise 1.13 follow

from this?

36. Prove: Aut(S3) = Inn(S3) ∼= S3.
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37. Let H1 and H2 be subgroups of G, and suppose that we have G = H1 ∪ H2. Prove:

G = H1 or G = H2. Does a similar statement hold for the identity G = H1 ∪H2 ∪H3?

38. Let n > 1 be an integer. Show that the canonical multiplication of residue classes in

Z/nZ is not a group operation.

39. Let G be a set with a binary operation that satisfies axioms (G1) and (G2) from 2.1.

Prove that the subset

G∗ = {g ∈ G : there exists an x ∈ G with xg = gx = e}

of G is a group under the given binary operation.

40. Show that the following examples of sets G satisfy the conditions in the previous exer-

cise, and determine the corresponding group G∗:

1. G = R, and the operation is multiplication;

2. G = Z, and the operation is multiplication;

3. G = Z/8Z, and the operation is the canonical multiplication;

4. X is a set, G consists of the maps X → X, and the operation is composition;

5. X is a group, G = End(X), and the operation is composition.

41. Let A and B be abelian groups written additively. Prove that Hom(A,B) becomes a

group if we define the sum f1+f2 of two homomorphisms by the formula (f1+f2)(a) =

f1(a) + f2(a). Is the restriction to abelian groups A necessary? Is the restriction to

abelian groups B necessary?

42. Let X be a set and A be an abelian group. Prove that the set Map(X,A) of A-valued

functions on X is a group under the “sum of functions” (f1 + f2)(x) = f1(x) + f2(x).

Is the restriction to abelian groups necessary?

43. Let X be a set and P (X) the power set of X. Show that the symmetric difference

A∆B = (A ∪ B) \ (A ∩ B) defines a group operation on P (X) and that P (X) is

isomorphic to Map(X,Z/2Z).

[Hint: first construct a bijection P (X)→ Map(X,Z/2Z) and “transport the structure.”

(This is an efficient way of doing Exercise 2.25.)]

44. Let G be a group and H ⊂ G be a subgroup. Show that the relation

g1 ∼ g2 ⇐⇒ g2g
−1
1 ∈ H

is an equivalence relation on G and that the equivalence classes for this relation are the

right cosets of H in G. Conclude that G is a disjoint union of right cosets of H.

45. Let G be a group and H ⊂ G be a subgroup. Show that the bijection G → G given

by x 7→ x−1 induces a bijection G/H −→ H\G. Conclude that the index [G : H] of a

subgroup can also be defined as the number of right cosets of H in G.

46. Show that every subgroup H ⊂ G of index 2 is a normal subgroup.

47. Suppose that every left coset of H in G is also a right coset of H in G. Prove that H

is normal in G.

48. Show that the only left coset of O2(R) in I2(R) that is also a right coset is the class of

O2(R) itself.
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49. Show that the subgroup T ⊂ I2(R) of translations is a normal subgroup in I2(R) and

that I2(R)/T is isomorphic to the orthogonal group O2(R).

50. Prove that for every point x ∈ R2, the stabilizer

Stabx = {φ ∈ I2(R) : φ(x) = x} ⊂ I2(R)

is a subgroup of I2(R) that is conjugate to O2(R). Conclude that I2(R) contains

infinitely many different subgroups isomorphic to O2(R).

51. Show that the subgroups H1 = ⟨(1 2), (3 4)⟩ and H2 = ⟨(1 2)(3 4), (1 3)(2 4)⟩ of S4 are

both isomorphic to V4. Show that H1 is not normal in S4 but H2 is. What group of

order 6 is S4/H2?

52. Let n and k be positive numbers with k ≤ n and H ⊂ Sn be the set of permutations

that map the subset {1, 2, 3, . . . , k} ⊂ {1, 2, 3, . . . , n} to itself. Prove: H is a subgroup

of Sn of index
(
n
k

)
.

[There are also other ways to prove that the binomial coefficient
(
n
k

)
= n!

k!(n−k)! is an

integer. . . ]

53. A subgroup H ⊂ G is called characteristic if we have σ[H] = H for all σ ∈ Aut(G).

Show that characteristic subgroups are normal, and give an example of a non-charac-

teristic normal subgroup.

54. Show that the center Z(G) is a characteristic subgroup of G.

55. Show that the subgroup Inn(G) of inner automorphisms is normal in the group Aut(G)

of all automorphisms.

[Non-inner automorphisms are called outer automorphisms. We define the quotient

Out(G) = Aut(G)/ Inn(G). (This is not the “group of outer automorphisms”!)]

56. Let A be an abelian group. The torsion subgroup Ator of A is the set of elements of finite

order in A. Prove that Ator is a subgroup of A and that A/Ator contains no elements

of finite order other than the unit element.

[The assumption that A is abelian is essential; see Exercise 2.36.]

57. Determine Ator for A = Q, Q/Z, and R∗. Prove: (C∗)tor ∼= Q/Z.

58. Let H1 and H2 be subgroups of a finite group G with H1 ⊂ H2 ⊂ G. Prove: H1 is a

subgroup of H2, and we have

[G : H1] = [G : H2][H2 : H1].

*Is this also true if H1 has finite index in an infinite group G?

59. Let N1 and N2 be normal subgroups of G with N1 ⊂ N2 ⊂ G. Prove that the canonical
map G/N1 → G/N2 is a surjective homomorphism with kernel

N2/N1 = {n2N1 : n2 ∈ N2}.

Conclude that there is a canonical isomorphism

(G/N1)/(N2/N1)
∼−→ G/N2.

[This is also called “quotienting step-by-step”: we first quotient G by the small normal

subgroup N1, then quotient G/N1 by the image of the large normal subgroup N2 in

G/N1.]
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*60. Let H1 and H2 be subgroups of finite index in G. Prove that H1 ∩H2 is a subgroup of

finite index in G. Is [G : (H1 ∩H2)] necessarily a divisor of [G : H1] · [G : H2]?

55



5 Group Actions

Many groups we have encountered so far have the property that they permute an “as-

sociated” set X. For the permutation group S(X) in §2, this is precisely the definition

of the group; for the various groups of maps in §3 such as I2(R) and GL2(R), we had

X = R2. In geometry and algebra, an object X is often assigned a “symmetry group,”

which “acts on X.”

▶ Cubic and Tetrahedral Groups

For plane figures, we defined the symmetry group in 3.7. This definition is easily

generalized to symmetry groups Sym(X) of solid objects X ⊂ R3. If we take X to be

a tetrahedron, then T = Sym(X) is a subgroup of S(X). In §1, we saw that we do not

need to look at the action on the whole tetrahedron X: since a symmetry is fixed by

its action on the four vertices, there is an “inclusion” T ⊂ S4, which turns out to be a

group isomorphism. This establishes the “structure” of the tetrahedral group T : T is

isomorphic to the permutation group S4.

Similarly, we can view the group K of symmetries of the cube as a subgroup of S8.

After all, every symmetry in K is fixed by its action on the cube’s eight vertices. Since

there are many ways to number a cube’s vertices, there is no fixed inclusion K ⊂ S8.

Each choice of numbering leads to an injective group homomorphism K → S8. Instead

of injective group homomorphisms, we generally say embeddings of K into S8. Note

that such an embedding is nothing but an isomorphism from K to a subgroup of S8.

Since not all permutations of the eight vertices can be realized by symmetries in K,

the embeddings K → S8 themselves are not isomorphisms: the image is not the whole

group S8. Therefore, the “structure” and even the order of K are not immediately

clear.

For both the tetrahedral group T and the cubic group K, we can study the action

of the symmetries on other parts of the tetrahedron and cube than the vertices.

T −→ S3 K −→ S4

For example, if we look at the action of the tetrahedral group T ∼= S4 on the three line

segments connecting the midpoints of “opposite” edges, then by choosing a numbering,

we obtain a “geometric homomorphism” S4 → S3. Note that it is not obvious a priori

whether such a homomorphism exists. For the cubic group K, we can study the action

on the four space diagonals of the cube. After we choose a numbering, this gives rise

to a homomorphism K → S4.
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The resulting homomorphisms T → S3 and K → S4 are not injective. In the

first case, this is obvious from the cardinalities: we cannot map the group T of order

24 injectively to a group of order 6. In the second case, we can easily determine the

kernel: the symmetries of the cube that preserve the space diagonals are the identity

and the point reflection in the center of the cube.

For the tetrahedron, the reflections in the planes through a “connecting line seg-

ment” and one of the corresponding edges give the three 2-cycles in S3, and for the

cube, we can interchange two space diagonals by reflecting in the plane through the

other two space diagonals. Since S3 and S4 are generated by their 2-cycles by 1.5, it

follows that the homomorphisms T → S3 and K → S4 are surjective.

Exercise 1. Determine which cubic symmetries the 3-cycles and 4-cycles in S4 give.

For the tetrahedral group T , the kernel N of the surjection T → S3 consists of the

identity and three half turns about the connecting line segments drawn in the figure.

If we view T as S4, then the kernel is the normal subgroup {(1), (1 2)(3 4), (1 3)(2 4),

(1 4)(2 3)} ∼= V4 of S4. “Geometrically,” we thus obtain an isomorphism

T/N = S4/V4
∼−→ S3.

For the cubic group K, the existence of a surjective homomorphism K → S4 with

kernel {±1} generated by the point reflection −1 in the center gives much information:

we have K/{±1} ∼= S4 by the isomorphism theorem 4.10 and, in particular, #K =

2 · 24 = 48. If we define the sign of a solid symmetry through the determinant, as we

did after 3.9, then the subgroup K+ ⊂ K of cubic symmetries with sign +1 is a group

of order 24 that maps injectively to S4. Conversely, the isomorphism

K+ ∼−→ S4

gives a “geometric interpretation” of S4 as the rotation group of the cube (cf. Exercise

2.65).

As in the examples above, in general, an action of a group on a set is nothing but

a homomorphism G→ S(X).

5.1. Definition. An operation or action of a group G on a set X is a homomorphism

ϕ : G→ S(X).

If G acts on X, we say that X is a G-set. If ϕ is injective, the action is called faithful.

For ϕ(g)(x), we prefer to write g ◦x, g(x), or even gx for short. By the homomorphism

property, we have g1g2 ◦ x = g1 ◦ (g2 ◦ x) for g1, g2 ∈ G, and the unit element e ∈ G
acts as the identity on X.

Exercise 2. Show that a map G×X → X, denoted by (g, x) 7→ g ◦ x, gives an action of G on X if

and only if it satisfies the following two conditions:

(W1) e ◦ x = x for all x ∈ X;

(W2) gh ◦ x = g ◦ (h ◦ x) for all g, h ∈ G and x ∈ X.
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In some situations, it is more natural to let a group G act “from the right” on the

set X and consider maps X × G → X that satisfy x ◦ (gh) = (x ◦ g) ◦ h. Unlike

the action in 5.1, also called a left action of G on X, such a right action corresponds

not to a homomorphism G → S(X) but to an anti-homomorphism G → S(X). See

Exercises 19 and 20 for details.

▶ Orbit, Stabilizer, Fixed Point

The notions of “orbit” and “stabilizer” are very natural in the context of group actions.

5.2. Definition. Let G be a group that acts on X. The stabilizer or isotropy group

of a point x ∈ X in G is the subgroup

Gx = {g ∈ G : gx = x} ⊂ G,

and the orbit of x under G is the subset

Gx = {gx : g ∈ G} ⊂ X.

It is easy to see that the stabilizer Gx is a subgroup of G. The kernel of the action

ϕ : G→ S(X) in 5.1 is equal to the intersection
⋂
x∈X Gx of all stabilizers.

The number of elements in the orbitGx, which can be infinite for infinite groupsG,

is called the length of the orbit of x. If there exists an x ∈ X with Gx = X, then the

action of G on X is called transitive.

If we have gx = x for g ∈ G and x ∈ X, then x is called a fixed point of g. If x

is a common fixed point of all g ∈ G, then x is called a fixed point for the action of G

on X. The fixed points for the action of G on X are the points x ∈ X for which the

orbit Gx = {x} has length 1. The set of fixed points is often denoted by XG. If XG is

the empty set, the action of G on X is called fixed-point-free.

The natural action of I2(R) on R2 is transitive and fixed-point-free. The stabilizer

of the origin is the orthogonal group O2(R). The stabilizers of the other points are

subgroups conjugate to O2(R) (see Exercise 4.50).

Generally, the stabilizer of a point gx in the orbit of x is equal to gGxg
−1 and

therefore conjugate to Gx. This follows easily from the equivalences

g̃gx = gx⇐⇒ g−1g̃gx = x⇐⇒ g−1g̃g ∈ Gx ⇐⇒ g̃ ∈ gGxg
−1.

This is another one of the many situations in which conjugation automorphisms occur.

The length of the orbit Gx of x can be deduced from the size of the stabilizer Gx

of x, as follows.

5.3. Theorem. Let X be a G-set and x ∈ X. The map g 7→ gx induces a bijection

G/Gx ←→ Gx

between the set of left cosets of Gx in G and the orbit of x. In particular, the length

of the orbit Gx is equal to the index [G : Gx].
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Proof. Analogously to the situation in 4.7, we have equivalences

gx = hx⇐⇒ h−1gx = x⇐⇒ h−1g ∈ Gx ⇐⇒ gGx = hGx,

so the map g 7→ gx sends left cosets ofGx injectively to elements ofGx. The surjectivity

is clear from the definition of Gx.

For any action of a finite group G on a set X, Theorem 5.3 gives us the useful identity

#Gx ·#Gx = #G.

In words, for every point, the product of its orbit length and the order of its stabilizer

is the group order. This allows us to determine the orders of all sorts of symmetry

groups.

5.4. Example. Take the group K of symmetries of the cube. There are various ways

to determine the order of K.

A

B

C
P

V

W

P

Q

For a vertex P of the cube, the orbit of P consists of the cube’s eight vertices. An

element of the stabilizer KP of P is fixed by its action on the three “adjacent” vertices

A, B, and C. A sketch immediately shows that KP
∼= D3

∼= S3 is the symmetry group

of the equilateral triangle ABC. It follows that the cubic group has order 8 · 6 = 48.

If instead of P , we take the face V in the back, then we see that the orbit of V has

length 6 and the stabilizer KV is the group D4 of symmetries of the square V . Again,

the product of the orbit length and the order of the stabilizer is equal to 6 ·8 = 48. For

the “central plane” W in the cube, the orbit has length 3, and the stabilizer KW has

order 16. After all, KW consists of KV and the composition of the elements of KV with

the reflection in the plane through W . Finally, if we take an edge PQ, then the orbit

has length 12, and the stabilizer KPQ
∼= V4 is the group generated by the reflections in

the perpendicular bisector of PQ and in the plane through PQ and the space diagonal

from P .

Exercise 3. What points on the faces have an orbit of length 48 under the action of K?
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If the orbits of two elements x, y ∈ X have a non-empty intersection, there exist

g1, g2 ∈ G such that g1x = g2y. The orbit of x equals Gx = Gg1x = Gg2y = Gy, so

the orbits coincide. Two G-orbits are apparently either disjoint or equal.

Exercise 4. Show that the orbits of X under G are the equivalence classes in X for the equivalence

relation x ∼ y ⇐⇒ x = gy for some g ∈ G.

We conclude that under the action of G, the set X splits up into orbits.

5.5. Theorem. A G-set X is a disjoint union of orbits.

In the case of a transitive action, there is only one orbit. For a fixed-point-free action,

there are no orbits of length 1. The set of orbits of X under the action of G is called

the orbit space or quotient of X under the action of G and is denoted by G\X.

5.6. Example. For the action of the orthogonal group G = O2(R) on the planeR2, the

origin O is a fixed point. For x ̸= O, the orbit Gx is a circle about the origin through x,

and the stabilizer Gx is a group with two elements generated by the reflection σℓx in the

line ℓx through O and x. Indeed, R2 is the disjoint union of O and the circles about O.

For x ̸= O, the stabilizer Gx is not a normal subgroup of G; the cosets in G/Gx are

of the form ρGx for a rotation ρ ∈ G, and the correspondence ρGx ↔ ρx gives the

bijection from 5.3. The action of O2(R) on R2 is neither transitive nor fixed-point-free.

Exercise 5. Show that the natural action of O2(R) on R2 \ {O} is not transitive but that the

stabilizers of the points are all conjugate. Is the action fixed-point-free?

▶ Orbit Decomposition Formula

For a groupG that acts on a finite setX, there is a formula to count the number of orbits

under the action. This orbit decomposition formula, often attributed to the Englishman

William Burnside (1852–1927), goes back to work of the Frenchman Augustin-Louis

Cauchy (1789–1857) and the German Georg Ferdinand Frobenius (1849–1917). The

formula uses the permutation character associated with the action. This is the integer

function χ : G→ Z that sends an element g ∈ G to the number

χ(g) = #{x ∈ X : gx = x}

of fixed points of g in X.

5.7. Orbit decomposition formula. Let G be a finite group that acts on a finite

set X and χ be the corresponding permutation character. Then the number of G-orbits

in X is equal to

#(G \X) =
1

#G

∑
g∈G

χ(g).

Proof. We can write the number of G-orbits of X as a sum over the elements of X,

where every x ∈ X has “weight” 1
#Gx

. Using 5.3, we then obtain

#(G \X) =
∑
x∈X

1

#Gx
=

1

#G

∑
x∈X

#Gx.
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The number of elements #Gx of the stabilizer of x can be written as
∑

g∈G δg,x, where

we take δg,x equal to 1 if gx = x and equal to 0 if gx ̸= x. By changing the order of

summation, we obtain

1

#G

∑
x∈X

∑
g∈G

δg,x =
1

#G

∑
g∈G

∑
x∈X

δg,x =
1

#G

∑
g∈G

χ(g)

for the number of G-orbits.

In words, the orbit decomposition formula says that the number of orbits is equal

to the average number of fixed points per group element. It is particularly useful in

combinatorics for counting numbers of configurations in situations where symmetry

plays a role.

▶ Combinatorical Applications

A Dutch cube is a cube whose six faces are each red, white, or blue. Since there are

three possible colors for each face, there are 36 = 729 ways to color the cube. The

set X of 729 cubes obtained this way contains fewer than 729 “truly different” cubes.

After all, many of these cubes can be transformed into one another through rotations.

To know how many different Dutch cubes exist, we must calculate the number of orbits

in X under the action of the rotation group K+ of the cube. As we saw before 5.1, the

group K+ is isomorphic to S4.

6 3 8 6

In addition to the identity id ∈ K+, which leaves all 729 elements of X invariant, there

exist four types of rotations of the cube. There are two quarter turns about each of

the three central axes parallel to the edges. A Dutch cube that is invariant under one

of these six quarter turns has the property that the four faces that are interchanged

cyclically all have the same color. Such a cube has at most three different colors, so

for each quarter turn, we find 33 = 27 invariant cubes in X.

The three half turns about the axes mentioned above leave two faces of a cube in

place and interchange the other four in two pairs of opposite faces. For a cube invariant

under this, these pairs of opposite faces have the same color. This leaves four colors

to choose, and we find 34 = 81 invariant cubes in X for each of these three elements

in K+.

The eight rotations by ±2π/3 about one of the four space diagonals interchange

the six faces in two 3-cycles. Per element, this gives 32 = 9 invariant cubes in X.
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Finally, we have the six half turns about the lines that connect the midpoint of

an edge and the midpoint of the diametrically opposite edge. These interchange the

faces in three pairs, so we find 33 = 27 invariant cubes in X.

The orbit decomposition formula now gives

#(K+ \X) =
1

24
(1 · 729 + 6 · 27 + 3 · 81 + 8 · 9 + 6 · 27) = 57

orbits for the action of K+ on X. This is the number of distinct Dutch cubes.

Exercise 6. Show that if we use n different colors, the number of distinct cubes is equal to

n2

24
(n4 + 3n2 + 12n+ 8).

See Exercises 16–18 for similar problems involving other symmetry groups.

▶ Regular Action

In addition to the more geometric examples of group actions on sets we have already

mentioned, there are “abstract actions” we can define for all groups and use to analyze

the structure of finite groups. The remainder of this section gives an idea of some of

the possibilities. In §9, we will discuss such methods in detail.

The most direct example of an abstract group action is the regular action of a

group on itself by left multiplication. We can use it to view every group as a subgroup

of a suitably chosen permutation group.

5.8. Cayley’s theorem. Let G be a group and S(G) be the permutation group on

the set G. For g ∈ G, denote by λg : G→ G the left multiplication x 7→ gx. Then

f : G −→ S(G)

g 7−→ λg

is an embedding, and G is isomorphic to a subgroup of S(G).

Proof. After (2.3), we saw that for every g ∈ G, the map λg is a bijection G → G.

For elements g1, g2, and x in G, we have

λg1g2(x) = g1g2x = λg1(g2x) = λg1(λg2(x)) = (λg1λg2)(x),

so f is a homomorphism. It follows from λg(e) = g that λg1 and λg2 are different for

g1 ̸= g2, so f is injective, and G is isomorphic to the subgroup f [G] ⊂ S(G).

Theorem 5.8, named after the Englishman Arthur Cayley (1821–1895), is mainly of

theoretical interest. The theorem expresses that group elements can be viewed as

permutations, namely from G to itself. In practice, the group S(G) is usually too large

for explicit computations, and the choice in Cayley’s theorem is not very “efficient.”

For example, we can embed the dihedral group D5 of order 10 in the permutation

group S5 of order 120 by viewing its action on the five vertices of a regular pentagon.

Cayley’s theorem gives an embedding in a group of order 10! = 3628800.
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Exercise 7. Which embedding do we get for G = S5? Is it “efficient”?

If a subgroup H ⊂ G acts by left multiplication on G, then the orbit space H \ G is

precisely the set of right cosets of H in G. Before 4.12, we already denoted this set

by H \ G. So orbit spaces can be viewed as generalized sets of right cosets. For the

regular action of a normal subgroup N on G, the orbit space N \G = G/N “inherits”

the structure of a group from G, as indicated in 4.14.

In geometry, it often happens that a group G of transformations acts on a given

space X. Under suitable conditions on the action, the quotient G \ X “inherits”

geometric properties from X, for example the notion of a distance. For X the plane

and G a suitable group of isometries, we can obtain nice examples such as cylinders

and tori; see Exercises 25 and 25.

We get a useful variant of the action in 5.8 by letting G act not on itself but on

the set G/H of left cosets of a subgroup H in G. The regular action of G on G/H is

now given by g ◦ xH = gxH.

5.9. Theorem. The regular action G → S(G/H) of G on G/H is a homomorphism

with kernel
⋂
x∈G xHx

−1.

Proof. It is easy to check that left multiplication by g permutes the left cosets of H

and that the given map is an action. If we have gxH = xH for a coset xH, then we

have x−1gx ∈ H and g ∈ xHx−1. It follows that g fixes all cosets if and only if it is an

element of
⋂
x∈G xHx

−1.

Exercise 8. Show that N =
⋂

x∈G xHx
−1 is the largest normal subgroup of G that is contained in H.

The regular action of G on G/H in 5.9 is an example of a transitive action. The

stabilizer of H ∈ G/H is the subgroup H itself, and in this case, the bijection in 5.3 is

the identity. The stabilizers of the other cosets xH ∈ G/H are the conjugate subgroups

xHx−1.

For a normal subgroup N , the regular action of G on G/N is the composition

of the canonical map G → G/N with the regular action of G/N on itself, and from

5.9, we obtain a new proof of Theorem 4.14. In general, 5.9 gives a normal subgroup

N ⊂ H in G.

As an application of 5.9, we generalize the result from Exercise 4.46 that every

subgroup of index 2 is normal.

5.10. Theorem. Let G ̸= 1 be a finite group and p be the smallest prime divisor of

#G. Then every subgroup H ⊂ G of index p is normal in G.

Proof. Let us show that the kernel N of the map f in 5.9 is equal to H. Then H is

normal by 4.13. Since S(G/H) is isomorphic to the permutation group Sp, the order

of G/N ∼= f [G] ⊂ S(G/H) is a divisor of the group order p! of S(G/H). We have

N ⊂ H ⊂ G, so [G : N ] = p · [H : N ] is a divisor of both p! and #G. Hence [H : N ]

is a divisor of both (p− 1)! and #G. Since (p− 1)! and #G have no common divisors

by assumption, we find that [H : N ] = 1 and H = N .
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▶ Conjugation Action

A second standard example of an abstract group action is the conjugation action men-

tioned before. In 4.11, we saw that for every group element g ∈ G, the conjugation

map σg : x 7→ gxg−1 is a bijection of G and that the map g 7→ σg is a homomorphism

G→ Aut(G) ⊂ S(G) with kernel Z(G), the center of G. In particular, this is an action

of G on itself. There is specific terminology for orbits and stabilizers for this action.

The stabilizer of x ∈ G under conjugation is called the normalizer

Nx = {g ∈ G : gxg−1 = x}

of the element x. It is the subgroup consisting of the elements that commute with x.

The orbits under conjugation in G are called the conjugacy classes of G. For finite

groups, the cardinality [G : Nx] of a conjugacy class divides the group order. The fixed

points for the conjugation action are the elements of the center Z(G) of G.

5.11. Example. Determining the conjugacy classes for the symmetric group Sn is

relatively straightforward. After all, for arbitrary σ, τ ∈ Sn, to obtain the conjugate

τστ−1 of σ, we need (Exercise 2.46) to replace each cycle (x1 x2 · · · xk) in the disjoint

cycle decomposition of σ with (τ(x1) τ(x2) · · · τ(xk)). Elements in Sn are therefore

conjugate exactly when their cycle types, defined before 2.7, correspond.

The group S3 of order 6 contains the unit element, two 3-cycles, and three 2-cycles;

this gives three conjugacy classes of orders 1, 2, and 3, respectively. For larger n, we

get a slightly more elaborate count. If we first note that the number of k-cycles in

Sn is equal to
(
n
k

)
· (k − 1)!, then in specific cases, it is relatively easy to compute the

number of elements of a given cycle type. For example, for n = 4 and n = 5, we find

the following numbers of elements in each of the conjugacy classes. Note that these

numbers indeed divide the group orders #S4 = 24 and #S5 = 120.

(1) (12) (123) (1234) (12)(34) (12345) (12)(345)

S4: 1 6 8 6 3 – –

S5: 1 10 20 30 15 24 20

We already came across the group S4 as the rotation group K+ of the cube. The five

conjugacy classes in S4 are exactly the five “types” of rotations of the cube.

Exercise 9. Determine the sizes of all conjugacy classes in the alternating groups A4 and A5.

Every group also acts by conjugation on the set of its subgroups. The orbit under

conjugation of a subgroup H ⊂ G consists of the set of subgroups {gHg−1 : g ∈ G}
conjugate to H. Since every conjugation gives an automorphism of G, all these sub-

groups are isomorphic to H. They also all have the same index in G. The fixed points

for this conjugation action are precisely the normal subgroups of G. The stabilizer of

a subgroup H ⊂ G under conjugation is called the normalizer

NG(H) = {g ∈ G : gHg−1 = H}

of H in G. We have H ◁ NG(H), and NG(H) is the largest subgroup of G in which

H is normal. For H ◁ G, we have NG(H) = G, and for arbitrary H, the number of

subgroups in G conjugate to H is equal to the index [G : NG(H)] by 5.3.
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Exercise 10. Show that a subgroup of finite index has only finitely many conjugates.

▶ Cauchy’s Theorem

When X is finite, we can write the order of X as the sum of the lengths of the orbits

under G. Using the formula in 5.3 for the length of an orbit, this gives

#X =
∑

Gx∈G\X

[G : Gx].

The stabilizer Gx in this formula depends on the choice of the representative x in each

orbit, but the index [G : Gx] does not. After all, for different choices of x within

an orbit, the stabilizers are conjugate, and conjugate subgroups have the same index

in G. Instead of summing over orbits, we can also sum over the elements in a system

of representatives for the G-orbits of X: this is a subset of X that contains exactly

one element from every G-orbit. If B is such a system of representatives, then we have

XG ⊂ B because every fixed point is the unique representative of its G-orbit. We can

therefore rewrite the previous formula as

(5.12) #X = #XG +
∑

x∈B\XG

[G : Gx].

As an application of this, we prove a fundamental theorem of Cauchy on finite groups.

The proof is a generalization of a simpler argument that only works for p = 2 (Exercise

4.24).

5.13. Cauchy’s theorem. Let G be a finite group and p be a prime divisor of #G.

Then G contains an element of order p.

Proof. Let X ⊂ Gp be the set of p-tuples (g1, g2, . . . , gp) ∈ Gp for which we have

g1g2g3 . . . gp = e. Conjugating g1g2g3 . . . gp by gp shows that we then also have the

equality gpg1g2g3 . . . gp−1 = e, so we can “shift” the p-tuples in X cyclically. This

defines an action of the cyclic group Z/pZ on X given by

k · (g1, g2, . . . , gp) = (gp−k+1, gp−k+2, . . . , gp−1, gp, g1, . . . , gp−k) (1 ≤ k ≤ p).

By 5.3, the length of every orbit under this action is a divisor of #(Z/pZ) = p, hence

equal to 1 or p. The orbits of length 1 come from the fixed points under the shift,

which are the constant sequences (x, x, . . . , x) ∈ X. By the product condition on X,

there is exactly one such sequence for every element x ∈ G with xp = e.

The number of elements of X is equal to (#G)p−1. After all, we can choose p− 1

coordinates freely, and the product then fixes the last coordinate. Since the order of

X is a p-tuple and all orbits have length 1 or p, we see (using 5.12 if necessary) that

the number #XG of orbits of length 1 is a multiple of p. This means that the number

of constant sequences (x, x, . . . , x) ∈ X is divisible by p. So, in addition to the trivial

sequence (e, e, . . . , e), there are other constant sequences in XG, which correspond to

elements of order p in G.
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More generally, it follows from 5.12 that if G is a p-group, that is, a finite group G

whose order is a power of a prime p, then for every finite G-set X, the congruence

(5.14) #X ≡ #XG mod p

holds. Indeed, as in the proof of 5.13, all orbits outside of XG have length divisible

by p.

In 10.6 and 10.8, we will use 5.14 to show that every group G of order divisible

by pk contains a subgroup H of order pk. For k = 1, this is Cauchy’s theorem because

a subgroup of order p is of the form ⟨x⟩ with x of order p. In the case where pk is the

highest power of p that divides #G, a subgroup H ⊂ G of order pk is called a Sylow

p-subgroup of G. For k > 1, such a subgroup need not be cyclic. Exercise 57 shows

why Sylow p-subgroups always exist.
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Exercises.

11. Let ϕ, ϕ′ : K → S8 be two embeddings of the cubic group in S8 obtained by numbering

the cube’s vertices in two different ways. Prove: ϕ = σ ◦ ϕ′ for an inner automorphism

σ ∈ Inn(S8).

12. Show that the formula r ◦ z = z+ r for r ∈ R and z ∈ C gives an action of the additive

group G = R of real numbers on the set X = C of complex numbers. Describe the

orbits under this action.

13. Repeat the previous exercise for r ◦ z = eirz.

14. An octahedron is the solid figure bounded by eight equilateral triangles. Let Oct be the

symmetry group of the octahedron. Determine the orders of the stabilizers of a vertex

and of a face in Oct and the order of Oct itself.

15. Show that the six centers of the faces of a cube form the vertices of an octahedron.

Deduce that we have an isomorphism K
∼−→ Oct.

16. Define a Dutch octahedron, and determine the number of “truly different” Dutch oc-

tahedra. How large does this number become if we view an octahedron and its mirror

image as being “the same”?

17. An orange necklace consists of five spherical beads on a closed necklace, each red, white,

blue, or orange. The beads can move freely along the necklace. Determine the number

of different orange necklaces.

18. A magical octagon is obtained by soldering eight colored rods of equal length onto a

regular octagon. How many truly different magical octagons can we make if the rods

are available in ten different colors?

19. A group map f : G → G′ is called an anti-homomorphism if for any two elements

x, y ∈ G, we have the identity f(xy) = f(y)f(x).

a. Give an example of an anti-homomorphism that is not a homomorphism.

b. Do the statements in 4.2 and 4.3 hold for anti-homomorphisms?

c. Prove: f is an anti-homomorphism ⇐⇒ f∗ : x 7→ f(x−1) is a homomorphism.

20. A right action of a group G on a set X is an anti-homomorphism ϕ : G → S(X). In

this case, we denote ϕ(g)(x) by x ◦ g.

a. Prove that a map X ×G → X, denoted by (x, g) 7→ x ◦ g, gives a right action if

and only if it satisfies the following two conditions:

(RW1) x ◦ e = x for all x ∈ X;

(RW2) x ◦ gh = (x ◦ g) ◦ h for all g, h ∈ G and x ∈ X.

b. Prove that for every right action X × G → X, the map G × X → X given by

(g, x) 7→ x ◦ g−1 is a (left) action.
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21. Show that the modular group14 SL2(Z) of integer matrices with determinant 1 acts on

the complex upper half-plane H = {z : ℑ(z) > 0} by(
a b

c d

)
(z) =

az + b

cz + d
.

Determine the isotropy groups of z = i, z = 2i, and z = ζ3 (the third root of unity

in H). Is the action transitive?

22. Show that a matrix
(
a b
c d

)
∈ SL2(Z) has no fixed points on the complex upper half-plane

H if its trace has absolute value |a+ d| > 2.

23. Let F = Map(H,C) be the set of complex-valued functions on H. For f ∈ F and(
a b
c d

)
∈ SL2(Z), define the function f ◦

(
a b
c d

)
on H by

(
f ◦

(
a b
c d

))
(z) = f(az+bcz+d). Prove

that this gives a right action of SL2(Z) on F .

[The fixed points under this action are called the modular functions.]

24. Show that for every G-set X, the set Map(X,C) of complex-valued functions on X has

a natural right action on G.

25. Define the natural action of Z by translation on the complex plane C by k ◦ z = z + k,

and let Ω be the orbit space. The distance between two orbits B1, B2 ∈ Ω is d(B1, B2) =

min{|z1 − z2| : z1 ∈ B1, z2 ∈ B2}.
a. Show that Ω can be identified with the quotient group C/Z.

b. Show that for every z0 ∈ C, the canonical map π : C→ Ω given by z 7→ Z+ z is

injective and distance preserving on a disk of center z0. Conclude that the group

Ω “locally looks like the plane.” [The map π is called a local isometry.]

c. Explain why the group Ω “is topologically a cylinder.”

[Topology15 makes this question more precise: C/Z is homeomorphic to the cylin-

der.]

*26. State and make the analog of the previous exercise with Z replaced by the group

Z[i] = {a+ bi ∈ C : a, b ∈ Z} of Gaussian integers.

[The orbit space is the surface of an inner tube, called a torus. ]

27. Let X be a set. Show that a subset Y ⊂ X is stable under G (that is, we have gy ∈ Y
for g ∈ G and y ∈ Y ) if and only if Y is a union of orbits. Conclude that a subgroup

H ⊂ G is normal if and only if H is a union of conjugacy classes.

28. Show that the only normal subgroups of the alternating group A5 are the trivial ones

N = 1 and N = A5.

29. Let G be a finite group that acts transitively on a set X, and let N be a normal

subgroup of G. Prove that all orbits of X under N have the same length. Show that

the condition that N is normal cannot be left out.

30. For G-sets X and Y , we denote by Map(X,Y ) the set of maps from X to Y . Prove

that Map(X,Y ) becomes a G-set through the definition

(gf)(x) = gf(g−1x) (g ∈ G, f ∈ Map(X,Y ), x ∈ X).

31. A map f : X → Y of G-sets is called G-equivariant if it satisfies f(gx) = g(f(x)) for

g ∈ G and x ∈ X. Prove that the fixed points of G in Map(X,Y ) are exactly the

G-equivariant maps from X to Y .
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32. Define the notion of an isomorphism for G-sets, and show that the bijection G/Gx ⇐⇒
Gx given in 5.3 is an isomorphism of G-sets.

33. Let G be a finite group. Prove that there exists an n for which G is isomorphic to a

subgroup of GLn(R).

34. Let G be a finite group of order n and G → S(G) ∼= Sn be the Cayley map from 5.8.

Prove that the image of an element g ∈ G of order k is a product of n/k disjoint k-cycles

in S(G). When does the image of G in S(G) contain odd permutations?

35. Let G be a finite group of order 2u with u odd. Prove that the elements of odd order

form a subgroup of order u in G. [Hint: use the previous exercise.]

36. Show that the elements of odd order do not form a subgroup in Sn for n > 3.

37. Let G be a finite group of order 2nu with u odd, and suppose that G contains an element

of order 2n. Prove that the elements of odd order form a subgroup of index 2n in G.

38. Let H ⊂ D10 be the subset of elements of odd order in D10. Is H a subgroup? If so,

determine the index [D10 : H].

39. Prove that every group of order 6 is isomorphic to C6 or S3.

40. Let I(n) be the number of isomorphism classes of groups of order n. Show that I(n) is

finite for all n ≥ 1, and calculate I(n) for n ≤ 7.

41. Show that the number I(n) in the previous exercise satisfies I(n) ≤ ((n−1)!)n−1. *Can

you find a better upper bound?16

42. Let C be a system of representatives for the conjugacy classes of G, and denote the

normalizer of x ∈ G by Nx. Prove the class formula

#G = #Z(G) +
∑

x∈C\Z(G)

[G : Nx].

43. Let G be a finite group with exactly two conjugacy classes. Prove that G is the cyclic

group of order 2.

[There exist infinite groups with exactly two conjugacy classes.17]

*44. Let n ≥ 1 be an integer. Prove that (up to isomorphisms) there are only finitely many

finite groups with exactly n conjugacy classes.

[Hint: use the New Year’s puzzle at the end of §1.]

45. Let G be a group with order a prime power pk > 1. Prove: Z(G) ̸= 1.

46. Let p be a prime. Prove that every group of order p2 is abelian.

47. Suppose that G contains a subgroup H of finite index [G : H] > 1. Prove that G

contains a normal subgroup N of finite index [G : N ] > 1.

48. Let H ⊂ R be a subgroup of finite index in the additive group R of real numbers.

Prove: H = R. Does the analogous statement hold for subgroups of the additive group

Q of rational numbers?

49. Let G be a finite group that acts transitively on a set X with #X > 1. Prove: there is

an element g ∈ G that does not fix any elements of X, that is, such that gx ̸= x for all

x ∈ X.
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50. Let C be a set of representatives for the conjugacy classes of a finite group G. Prove

that G is generated by C.

51. Determine the normalizers of H = ⟨(1 2 3)⟩ in A4 and in S4.

52. Determine the normalizers of H = ⟨(1 2 3 4 5)⟩ in A5 and in S5.

53. Let C be the conjugacy class of an even permutation σ ∈ Sn. Prove that C is a

conjugacy class in An if the normalizer of σ in Sn contains an odd permutation and

that it is a union of two conjugacy classes in An of the same order if this is not the

case.

*54. Suppose that the element σ ∈ An in the previous exercise has a disjoint cycle decom-

position corresponding to the partition n = a1 + a2 + . . .+ at. Prove: C is a conjugacy

class in An if and only if two ai are equal or at least one of the ai is even.

55. Let G be a finite group and p be a prime that divides the order of G. Let t be the

number of elements of order p in G and h be the number of subgroups of order p in G.

Prove: t = h(p− 1), and h− 1 is divisible by p.

*56. Show that every subgroup of Sn can be generated by at most n− 1 elements.

[Hint: use induction on n to prove the stronger statement that n − t elements suffice,

with t the number of orbits of {1, 2, 3, . . . , n} under the action of the subgroup.]

57. Let G be a group of order n = pkm with p prime and p ∤ m. A Sylow p-subgroup of G

is a subgroup H ⊂ G of order pk. To prove that such an H exists, take X equal to the

collection of subsets of G of cardinality pk, and let G act on X by left multiplication:

gV = {gv : v ∈ V } for g ∈ G and V ∈ X.

a. Prove: #X =
(
n
pk

)
≡ m mod p.

b. Prove that there exists a V ∈ X for which the length of the orbit GV is relatively

prime to p.

c. Show that the stabilizer H = GV of a set V as in part b is a Sylow p-subgroup

of G.

58. Let p ≥ 3 be a prime and n be a positive integer.

a. Show that the edges of a regular p-gon can be colored in (np + (p− 1)n)/p truly

different ways if every edge is given one of n possible colors.

b. Conclude that np − n is divisible by p. (Compare with Theorem 6.18.)

59. Let G be a finite group and H be a subgroup of G. Can the number of conjugacy

classes of H be greater than that of G?
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6 Integers

In this section, we study mathematical objects that are so fundamental that they are

found in all developed cultures: integers. We obtain the set Z = {. . . ,−3,−2,−1, 0, 1,
2, 3, . . .} of integers by adding negative numbers to the set N = {0, 1, 2, . . .} of non-

negative or natural numbers. Some do not view 0 as a natural number, and the number

0 is not natural in that, like the negative numbers, it was invented later than the positive

numbers and was not used yet by, for example, ancient Greeks. We will not discuss the

axiomatic descriptions18 of N given by the Italian Peano (1858–1932). Such axioms

are used in logic to formalize the intuitively clear properties of the natural numbers,

including the proof method of complete induction we have used and the fact that every

non-empty set of positive numbers contains a smallest element.

The extension of N to Z needs no justification for anyone who has ever seen a

ledger or thermometer; from the point of view of group theory, we can say that Z,

unlike N, is a group under addition. It is an infinite cyclic group with generator 1 (or

−1). Every cyclic group generated by an element x of infinite order is isomorphic to Z

under the bijection xk ↔ k.

Every finite cyclic group is a quotient of Z. After all, if G = ⟨x⟩ is generated by

an element x of order n, then the map Z→ G given by k 7→ xk is surjective with kernel

nZ = {nk : k ∈ Z}. The isomorphism theorem gives G ∼= Z/nZ. This is the “additive

notation” for the cyclic group Cn from 3.8.

▶ Division with Remainder

The cyclic groups Z/nZ of residue classes modulo n are the only quotients of Z. The

proof of this relies on the useful notion of division with remainder.

6.1. Division with remainder. Let a and b > 0 be natural numbers. Then there

exist natural numbers q and r with

a = qb+ r and 0 ≤ r < b.

Proof. The set S = {a, a − b, a − 2b, a − 3b, . . .} contains natural numbers, such as

a ∈ S, and therefore a smallest natural number r = a − qb. The number r − b ∈ S is

less than r, hence negative. This gives 0 ≤ r < b, as desired.

Exercise 1. State and prove an analogous theorem for integers a and b ̸= 0.

What 6.1 says is nothing but the well-known fact that we can subtract b from a “as

often as possible.” The number r in 6.1 is called the remainder of a when dividing

by b. For b = n, Theorem 6.1 shows that we can denote the elements of Z/nZ by

0, 1, 2, . . . , n− 1. An equality x = y ∈ Z/nZ for x, y ∈ Z is called a congruence and

has been denoted by x ≡ y mod n since Gauss (1777–1855).

6.2. Corollary. Every subgroup of Z is of the form nZ for a natural number n.

Proof. Let H ⊂ Z be a subgroup. If H is the trivial group, we have n = 0. If H is

non-trivial, then H contains positive numbers; after all, for x ∈ H, we have −x ∈ H.
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Let n be the smallest positive number in H. Then we have H ⊃ nZ, and we will

show that equality holds. For a ∈ H arbitrary, we write a = qn + r as in 6.1. Then

r = a − qn is a non-negative number less than n, and as the difference of elements in

H, it is contained in H. It follows that r = 0 and a = qn ∈ nZ, so H = nZ.

▶ GCD and LCM

Using 6.2, we can express divisibility properties of integers in terms of subgroups of Z.

We write aZ + bZ for the subgroup of Z generated by a and b. It consists of the

elements xa+ yb with x, y ∈ Z.

6.3. Definition. For integers a and b, we use the following terminology:

1. If we have aZ ⊃ bZ, then a is called a divisor of b and b a multiple of a.

2. If we have aZ+ bZ = Z, then a and b are said to be relatively prime or coprime.

3. The non-negative generators of aZ + bZ and aZ ∩ bZ are called the greatest

common divisor GCD(a, b) and the least common multiple LCM(a, b) of a and b.

Note that 6.3.1 is equivalent to another common formulation: a number a divides b if

there exists an x ∈ Z with ax = b. We denote “a divides b” by a | b. We see that 0

is divisible by every number a because the trivial subgroup 0Z is contained in every

subgroup aZ of Z. A number b ̸= 0 has only finitely many divisors because every

divisor a | b satisfies |a| ≤ |b|.
A number d ≥ 0 with dZ = aZ + bZ is a divisor of both a and b. Conversely,

for every common divisor n of a and b, we have the inclusion nZ ⊃ aZ + bZ = dZ,

so n divides d. Thus, except in the case d = 0 = GCD(0, 0), d is indeed the greatest

common divisor. Analog remarks explain the name of the least common multiple.

It follows from the definition of GCD(a, b) that there exist numbers x, y ∈ Z with

(6.4) xa+ yb = GCD(a, b).

In particular, a and b are relatively prime if and only if the equation xa + yb = 1 has

an integer solution. In 6.13 and 6.14, we will indicate how to quickly calculate the

numbers x, y, and GCD(a, b) given a and b.

Exercise 2. Define the numbers GCD(a1, a2, . . . , an) and LCM(a1, a2, . . . , an) for n ≥ 2.

▶ Prime Numbers

The trivial divisors of a number a ̸= 0 are the divisors ±1 and ±a. A number a > 1

that has only trivial divisors is called a prime number or prime for short. A number

a > 1 that is not prime is called composite. By definition, 1 is not prime, and the set

of prime numbers P looks as follows:

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .}.

Many elementary questions concerning P remain unsolved.19 A positive result is the

following classical theorem of Euclid20 (±300 BCE).

6.5. Theorem. There are infinitely many primes.
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Proof. Suppose that P = {p1, p2, p3, . . . , pn} is finite, and let p be the smallest divisor

> 1 of N = p1p2p3 . . . pn+1. Then p is prime because every divisor of p is also a divisor

of N . By our assumption, we have p = pi ∈ P for some i. Now, p = pi is a divisor of N

and of p1p2p3 . . . pn, hence also of N −p1p2p3 . . . pn = 1. This gives a contradiction.

Exercise 3. Are the numbers p1p2p3 . . . pn + 1, with p1, p2, . . . , pn the first n prime numbers, all

prime?

A prime in Z is defined by an irreducibility property: there are no non-trivial divisors.

The following prime property of prime numbers is much more useful.

6.6. Lemma. Let a and b be integers and p be a prime. Then we have p | ab =⇒ p | a
or p | b.

Proof. Suppose that p is a divisor of ab but not of b. Then GCD(p, b) is a positive

divisor of p that is not equal to p, so we have GCD(p, b) = 1. As in 6.4, there exist

x, y ∈ Z with xp+ yb = 1. Now, write a = (xp+ yb)a = axp+ yab; then p divides both

axp and yab, and therefore a.

Exercise 4. Let a and b be relatively prime, and let c be divisible by a and b. Prove: ab | c.

It easily follows by induction from 6.5 that a prime p that divides a product a1a2 . . . an
must divide at least one of the numbers ai.

▶ Unique Prime Factorization

The primes are the “multiplicative building blocks” of the integers, as follows.

6.7. Unique Factorization. Every positive number n can be factored uniquely as a

product

n =
∏
p∈P

pnp

of primes. The exponents np are natural numbers that are non-zero for only finitely

many primes p.

Proof. We first use induction to prove that every integer n ≥ 1 has a decomposition

in prime numbers. For n = 1, we can take the empty product. Let n > 1 be arbitrary,

and assume that all numbers less than n are products of prime numbers. If n has

only trivial divisors, then n is prime, and we are done. If n has a non-trivial divisor

n1 > 1, we can write n = n1n2. By the induction hypothesis, n1 and n2 both have a

decomposition, and by combining them, we obtain a decomposition of n. This proves

the existence of a prime factor decomposition for all n.

We still need to show that decompositions are unique. Suppose that we have two

decompositions

p1p2 . . . ps = q1q2 . . . qt

of a number in prime factors. We want to prove that the primes in both decompositions

are the same, up to the order. We carry out the proof by induction on the length s of

the first decomposition. For s = 0, there is nothing to prove. For s ≥ 1, the prime p1
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is a divisor of q1q2 . . . qt, so we have p1 | qi for some i. Since qi is prime, this implies

that we have p1 = qi. If we divide out the factors p1 and qi in the equality above, we

obtain two equal decompositions with s− 1 prime factors on the left and t− 1 on the

right. By the induction hypothesis, we have s− 1 = t− 1, and the factors are equal up

to their orders. This therefore also holds for the original decompositions. This proves

the uniqueness of the decomposition.

The exponent np of p in the factorization of n is also called the order of n at p and

denoted by ordp(n). The function ordp : Z>0 → Z≥0 satisfies the “homomorphism-

type” property ordp(xy) = ordp(x) + ordp(y) for x, y ∈ Z>0.

Exercise 5. Show that there exists a unique homomorphism ordp : Q∗ → Z whose restriction to Z>0

is equal to the function we just defined.

Finding the prime factor decomposition or factorization in 6.7 is more or less elementary.

An effective but often time-consuming way to decompose a number n > 1 consists of

simply trying out (“trial division”) d = 2, 3, 4, . . . as divisors of n. The smallest divisor

p > 1 of n is a prime number. If we have p < n, we write n = p ·m and then decompose

m. When p = n, the number n is itself prime.

Exercise 6. Prove that a number n > 1 is prime if it has no divisors d with 1 < d ≤
√
n.

▶ Rings

Theorem 6.7 is not a group-theoretic theorem for Z. It concerns the multiplication

in Z, and we already saw in §4 that Z is not a multiplicative group because not

all elements have an inverse. Since in a multiplicative group, all elements are one

another’s divisors, divisibility is only important in multiplicative structures that are not

groups. To axiomatize the combination of the “additive structure” and “multiplicative

structure” on Z, we leave the framework of group theory, which has become too narrow,

and introduce the notion of a ring.

6.8. Definition. A ring is an abelian group A, written additively, endowed with a

binary operation A×A→ A written multiplicatively that satisfies the following three

conditions:

(R1) A contains a unit element 1 for the multiplication.

(R2) For any three elements a, b, c ∈ A, we have the associative property

a(bc) = (ab)c.

(R3) For any three elements a, b, c ∈ A, we have the distributive properties

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

If we, moreover, have ab = ba for all a, b ∈ A, then A is called a commutative ring.
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The additive group underlying a ring A is taken to be abelian by definition. This is

not a restriction because this property follows from the other ring axioms (Exercise 50).

Conditions (R1) and (R2) are equal to conditions (G1) and (G2) in 2.1. However, we do

not require that every element of A has a multiplicative inverse, and the multiplicative

structure of a ring is therefore less “nice” than we are used to for groups. The set of

units or invertible elements

A∗ = {a ∈ A : there exists an a† ∈ A with aa† = a†a = 1}

in A does satisfy (Exercise 7) the group axioms under multiplication and is called the

group of units of A. For Z, the group of units Z∗ = {±1} is significantly smaller than Z.

Exercise 7. Show that the product of two units in a ring A is a unit.

Commutative rings A for which we have A∗ = A\{0} are called fields. In a field, every

element different from 0 is a unit. The best-known examples of fields are Q, R, and C.

The choice of the general ring axioms is motivated, in part, by the existence of the

ring of integers Z; this ring is the “standard example” of a commutative ring. Other

well-known examples of commutative rings are the ringsR[X] and C[X] of polynomials

with coefficients in R or C. These polynomials are added and multiplied as in analysis,

and it is well known that the ring axioms apply. We will come back to this in detail in

the course Algebra 2.

Exercise 8. Define the polynomial ring A[X] over an arbitrary commutative ring A, and verify that

A[X] is a commutative ring.

▶ The ring Z/nZ

We already saw in §1 that we can also multiply modulo n; formally, this finding means

that the group Z/nZ of residue classes modulo n ”is” a ring, just like Z.

6.9. Theorem. Let n be an integer and π : Z → Z/nZ be the canonical group ho-

momorphism. Then the multiplication π(x)π(y) = π(xy) makes the group Z/nZ into

a ring.

Proof. We have to show that the natural multiplication on Z/nZ is well defined; all

ring properties then follow from those for Z. If x ≡ x′ mod n and y ≡ y′ mod n, we

have

(6.10) xy − x′y′ = x(y − y′) + (x− x′)y′.

The right-hand side is an element of nZ; after all, x−x′ and y− y′ are elements of nZ.

So we have xy ≡ x′y′ mod n, as desired.

A map f : A → A′ between rings is called a ring homomorphism if it is a homo-

morphism of the additive groups that moreover satisfies

(1) f(1A) = 1A′ ;

(2) f(xy) = f(x)f(y) for x, y ∈ A.
Is f is also bijective, then f is called a ring isomorphism.

75



Algebra I– §6

Exercise 9. Give an example to show that, unlike in the case of groups, condition (1) does not follow

from condition (2).

Theorem 6.9 is the “ring equivalent” of 4.14 for G = Z. It says that for the given

product on Z/nZ, the quotient map π : Z→ Z/nZ is a ring homomorphism.

For n ̸= 0, the residue class ring Z/nZ is a finite ring with |n| elements. Its group

of units (Z/nZ)∗ is the group of invertible residue classes modulo n. A residue class

ā ∈ Z/nZ is invertible if there is an element x̄ ∈ Z/nZ such that āx̄ = 1̄, which means

that the equation ax = 1 + ny admits an integer solution. Right after (6.4), we noted

that this is possible exactly when a and n are relatively prime, so we have

(6.11) (Z/nZ)∗ = {ā ∈ Z/nZ : GCD(a, n) = 1}.

The order of the group (Z/nZ)∗ is denoted by φ(n), and the function φ : Z≥1 → Z is

called Euler’s φ-function .

Exercise 10. Calculate φ(n) for n ≤ 20.

If all residue classes different from 0̄ are units in Z/nZ, then n is relatively prime to

all numbers 1, 2, 3, . . . , n− 1, which means that n is prime.

6.12. Theorem. The ring Z/nZ is a field if and only if n is prime.

The finite fields Fp = Z/pZ for the primes p resemble the more familiar fields R and

C in several ways. For example, many theorems from linear algebra about matrices,

determinants, and dimensions hold over arbitrary base fields, so that we can also work

over Fp instead of R or C. However, linear algebra over Fp misses the natural notion

of a distance, which depends on the positivity of an inner product ⟨x, x⟩. There are

no positive or negative numbers in Fp, and we also cannot speak of “large” or “small”

elements in the sense of an absolute value. On the other hand, all finite-dimensional

vector spaces over Fp have only finitely many elements, so that we can often use

counting arguments, which in turn is not possible for R or C. In this setting, we have

what are also called finite geometries.

Over Fp, there are only finitely many matrices of a given dimension, which means

that the groups GLn(Fp) of invertible n × n matrices with coefficients in Fp are all

finite. Such finite groups of Lie type are ubiquitous.

Exercise 11. Show that GL2(F2) is isomorphic to S3.

For composite numbers n, the rings Z/nZ behave differently from the fields R and C

in many aspects. An identity such as 2̄ · 2̄ = 0̄ ∈ Z/4Z shows that a product of elements

different from zero can be zero and that a linear equation such as 2̄ · x̄ = 0̄ ∈ Z/4Z

can have two different solutions x̄ = 2̄ and x̄ = 0̄. In fact, we already saw something

like this in §1: the quadratic equation x̄2 = 1̄ has four solutions 1̄, 3̄, 5̄, and 7̄ in Z/8Z.

This shows that “well-known facts” about the numbers of zeros of polynomials are not

always true if we do arithmetic with coefficients in arbitrary commutative rings.
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▶ Arithmetic Modulo n

When doing arithmetic in the group (Z/nZ)∗, it is convenient to have a way to deter-

mine inverses explicitly. This means that we must find a way to calculate GCDs and

solve equation (6.4) explicitly.

6.13. Euclidean algorithm. For integers a and b, define the sequence of non-negative

integers r0, r1, r2, . . . by r0 = |a|, r1 = |b|, and

ri+1 = (remainder of ri−1 when dividing by ri) if ri ̸= 0.

Then there is an index k > 0 with rk = 0, and we have GCD(a, b) = rk−1.

Proof. Since the numbers in the sequence r1, r2, . . . keep decreasing but never become

negative, we must have rk = 0 for some k > 0. We then have rk−1 = GCD(rk−1, 0) =

GCD(rk−1, rk), and since GCD(a, b) = GCD(r0, r1) clearly holds, it now suffices to

prove the equalities GCD(r0, r1) = GCD(r1, r2) = . . . = GCD(rk−1, rk).

The equalities mentioned here say that for natural numbers a and b ̸= 0 and the

remainder r of a when dividing by b, we always have GCD(a, b) = GCD(b, r). This is

equivalent to the equality

aZ+ bZ = bZ+ rZ

of subgroups of Z. To prove this, note that a = qb + r is contained in the right-hand

side and r = a− qb is contained in the left-hand side.

The extended Euclidean algorithm is a calculation as in 6.13 that gives not only the

GCD of a and b but also a solution of equation (6.4). For this, we choose x0 = ±1 and

y0 = 0, as well as x1 = 0 and y1 = ±1, such that the equations

x0a+ y0b = r0 (= |a|),
x1a+ y1b = r1 (= |b|)

hold. The division with remainder in 6.13 gives us numbers qi that satisfy ri−1 =

qiri + ri+1. This means that from the two equations above, we can deduce a sequence

of equations

xia+ yib = ri for i = 0, 1, 2, . . .

in which the (i + 1)-st equation arises by subtracting the i-th equation qi times from

the (i − 1)-st. In other words, like ri, the numbers xi and yi satisfy the relations

xi−1 = qixi + xi+1 and yi−1 = qiyi + yi+1. If k is the index in 6.13 for which rk = 0

holds, then xk−1a+ yk−1b = rk−1 = GCD(a, b) gives a solution of (6.4).

Exercise 12. Prove: if a and b are positive, we have xiyi+1 − xi+1yi = (−1)i for i = 0, 1, . . . , k − 1.

Calculating GCDs with the Euclidean algorithm is usually more efficient than the

calculation in Exercise 20 using prime factorization. The underlying idea is applicable

in other situations as well, and variants of the algorithm therefore appear in numerous

computer implementations.
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6.14. Example. For b = 12345 and a = 56789, we find successively

1 · 56789− 0 · 12345 = 56789

−0 · 56789 + 1 · 12345 = 12345 (q1 = 4)

1 · 56789− 4 · 12345 = 7409 (q2 = 1)

−1 · 56789 + 5 · 12345 = 4936 (q3 = 1)

2 · 56789− 9 · 12345 = 2473 (q4 = 1)

−3 · 56789 + 14 · 12345 = 2463 (q5 = 1)

5 · 56789− 23 · 12345 = 10 (q6 = 246)

−1233 · 56789 + 5672 · 12345 = 3 (q7 = 3)

3704 · 56789− 17039 · 12345 = 1.

This calculation shows that 12345 and 56789 are relatively prime and tells us how to

write their GCD as a “linear combination” of 12345 and 56789. The choice of a sign

“−0” at the beginning emphasizes the alternating character of the signs of xi and yi.

If we only want to determine the GCD, it suffices to carry out only the calculations

on the right-hand side of the equalities in 6.13. The given calculation is also called

an “extended GCD calculation.” If the GCD of a and b is equal to 1, then the “final

values” xk−1 and yk−1 give the inverses of a modulo b and of b modulo a. (If we only

need one of the inverses, we can leave out the “superfluous” column throughout the

calculation.) In our example, we obtain

56789
−1

= 3704 ∈ (Z/12345Z)∗,

12345
−1

= −17039 = 39750 ∈ (Z/56789Z)∗.

Note that our calculation gives gcd(12345, 56789) = 1 but gives no information on the

prime factors of either number.

Exercise 13. Determine the GCD of a = your phone number (without area code) and b =your date

of birth (in the format YYMMDD, so write 920301 for March 1, 1992), and determine x, y ∈ Z for

which xa+ yb is equal to this GCD.

To understand the structure of the ring Z/nZ and its group of units (Z/nZ)∗, there is

a classic theorem for “decomposing” the ring Z/nZ as a product of rings. A product

A1 ×A2 of rings A1 and A2 is defined in the obvious way, as it is for groups (Exercise

4.17): addition and multiplication are defined coordinatewise on the product set A1×A2

as

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and (x1, x2) · (y1, y2) = (x1y1, x2y2).

It is easy to check that this gives the structure of a ring on A1×A2. Products of more

than two rings are defined likewise.

6.15. Chinese remainder theorem. Let m and n be relatively prime integers. Then

the canonical map

ψ : Z/mnZ
∼−→ Z/mZ× Z/nZ

(x mod mn) 7−→ (x mod m,x mod n)
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is a ring isomorphism. The map ψ induces an isomorphism of the groups of units

ψ∗ : (Z/mnZ)
∗ ∼−→ (Z/mZ)∗ × (Z/nZ)∗,

and Euler’s φ-function satisfies φ(mn) = φ(m)φ(n).

Proof. First note that ψ is a well-defined ring homomorphism: if x, x′ ∈ Z satisfy

x ≡ x′ mod mn, then we have (x mod m,x mod n) = (x′ mod m,x′ mod n).

Since m and n are relatively prime, there exist r, s ∈ Z with rm + sn = 1. The

map ψ sends the residue classes of rm = 1 − sn and sn = 1 − rm to (0̄, 1̄) and

(1̄, 0̄), respectively. These elements generate the additive group Z/mZ × Z/nZ, so

ψ is surjective. Since Z/mnZ and Z/mZ × Z/nZ both have mn elements, ψ is also

injective. We conclude that ψ is a ring isomorphism.

Under ψ, the group (Z/mnZ)∗ is mapped isomorphically onto the group of units

of Z/mZ× Z/nZ, which is equal to (Z/mZ)∗ × (Z/nZ)∗. Comparing the orders gives

the relation φ(mn) = φ(m)φ(n).

The proof of 6.15 shows how a solution of the equation rm + sn = 1 can be used to

find an element x ∈ Z with ψ(x) = (a mod m, b mod n). After all, since ψ(sn) = (1̄, 0̄)

and ψ(rm) = (0̄, 1̄), we have ψ(asn+ brm) = (ā, 0̄) + (0̄, b̄) = (ā, b̄).

Exercise 14. Determine a number x ∈ Z that satisfies the congruences x ≡ 12 mod 34 and x ≡
45 mod 67.

By repeatedly applying 6.15, we can deduce from the prime factorization of n a “de-

composition” of the ring Z/nZ in rings of the form Z/pkZ with p a prime.

6.16. Corollary. For every positive integer n, there is a natural ring isomorphism

Z/nZ
∼−→

∏
p|n(Z/p

ordp(n)Z).

Consequently, Euler’s φ-function satisfies

φ(n) =
∏
p|n

φ(pordp(n)) =
∏
p|n

(p− 1)pordp(n)−1 = n ·
∏
p|n

(1− 1

p
).

Proof. The first statement follows by repeatedly applying 6.15. By comparing the or-

ders of the groups of units, we obtain φ(n) =
∏

p|n φ(p
ordp(n)). By (6.11), the invertible

residue classes ā ∈ Z/pkZ for k ≥ 1 are the residue classes with p ∤ a. There are 1
p
· pk

residue classes ā with p | a, which gives φ(pk) = (1− 1
p
) · pk = (p− 1)pk−1.

▶ Euler’s Theorem and Fermat’s Little Theorem

In 4.9, we deduced from Lagrange’s theorem that the order of an element of a finite

group always divides the group order. If we apply this to the group (Z/nZ)∗, we find

a theorem discovered by Euler around 1750.

6.17. Theorem. For a and n ≥ 1 relatively prime, we have aφ(n) ≡ 1 mod n.
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The case where n is prime had already been studied by Fermat (1601–1665), who

formulated the following specific case of 6.17 around 1640.

6.18. Fermat’s little theorem. For p a prime and a an integer, we have

ap ≡ a mod p.

Proof. For a ≡ 0 mod p, the statement is clear. For a ̸≡ 0 mod p, the integer a is

relatively prime to p, and we have āp−1 = 1̄ ∈ (Z/pZ)∗ by 6.17. Multiplying by ā on

both sides gives the desired result.

The name of theorem 6.18 is meant to distinguish it from Fermat’s “great” or “last”

theorem, which says that for n > 2, the equation xn+ yn = zn has no integer solutions

other than the trivial ones with xyz = 0. This last theorem was proved in 1995 by

the British mathematician Andrew Wiles.21 The proof is considered a milestone in

twentieth-century number theory.

The rings Z/nZ can often be used to prove that equations have no solutions in Z.

We saw this in (1.2) for the equation 3x2+2 = y2 and in Exercise 1.25 for the equation

55x3+3 = y3. For given n, the solvability in Z/nZ can be determined in finitely many

steps, and if we use the ring structure of Z/nZ efficiently, this calculation is often

straightforward. In most cases, because of 6.16, the integer n is taken to be a prime or

a power thereof. A difficult question here is what can be concluded from the fact that

an equation has solutions modulo all prime powers. In some cases, it is possible to infer

from the existence of all these so-called “local solutions” that “global solution” exists

in Z. For example, already in 1785, the Frenchman Legendre (1752–1833) found that

for any three pairwise relatively prime positive integers a, b, c, the quadratic equation

ax2 + by2 = cz2

has an integer solution (x, y, z) ̸= 0 if and only if this is the case modulo all primes p.

The situation is significantly more complicated for higher-degree equations, and here,

substantial progress was not made until the 20th century. The obstructions that occur

here against the so-called local-global principle have given rise to several as yet unsolved

problems in number theory.22
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Exercises.

15. Let a and b be integers with d = GCD(a, b) ̸= 0. Prove: a/d and b/d are relatively

prime.

16. Show that the “quotient” q and the remainder r in 6.1 are uniquely determined by a

and b.

17. Let b > 1 be an integer. Prove that every positive integer a has a unique representation

a = ctb
t + ct−1b

t−1 + . . .+ c1b+ c0

with t a non-negative number that depends on a, “digits” ci ∈ {0, 1, 2, . . . , b− 1}, and
ct ̸= 0. [This is called the representation in the b-adic number system.]

18. Prove that every integer a ̸= 0 has a unique representation

a = 3tct + 3t−1ct−1 + . . .+ 3c1 + c0

with t a non-negative number that depends on a, “digits” ci ∈ {−1, 0, 1}, and ct ̸= 0.

Do the same for the representations

a = 2tct + 2t−1ct−1 + . . .+ 2c1 + c0

with “digits” ci ∈ {−1, 0, 1} that satisfy ct ̸= 0 and cici+1 = 0 for i = 0, 1, . . . , t− 1.

19. The sequence 1, 1, 2, 3, 5, 8, 13, . . . of Fibonacci numbers is defined recursively by

x1 = x2 = 1 and xn+2 = xn+1 + xn for n ≥ 1. Prove that two consecutive Fibonacci

numbers are relatively prime. Do we also always have GCD(xn, xn+2) = 1?

20. Show that the GCD and LCM of the numbers a =
∏
p∈P p

mp and b =
∏
p∈P p

np are

equal to, respectively,∏
p∈P p

min(mp,np) and
∏
p∈P p

max(mp,np).

Conclude that for integers a and b, we have |ab| = GCD(a, b) · LCM(a, b).

21. Can we calculate LCM(a, b) without factoring a and b explicitly?

22. Calculate the GCD and the LCM of a = 10000010 and b = 10000020.

23. Show that every rational number q ∈ Q∗ can be written uniquely as ε
∏
p∈P p

np with

ε ∈ {±1} and numbers np ∈ Z that are non-zero for only finitely many p.

24. Show that there exist infinitely many primes p ≡ 3 mod 4.

[Hint: imitate Euclid’s proof of 6.5.]

25. Let n be an integer of the form n = x2 + 1 with x ∈ Z and p be an odd prime divisor

of n. Prove: p ≡ 1 mod 4.

26. Show that there exist infinitely many primes p ≡ 1 mod 4.

27. Show that there exist infinitely many primes p ≡ 2 mod 3 and also that there exist23

infinitely many primes p ≡ 1 mod 3.

28. Let a > 1 and k > 1 be numbers such that ak − 1 is prime. Prove: a = 2, and k is

prime. Are all numbers of the form 2p − 1 with p prime themselves prime?

[Primes of the form 2p − 1 are called Mersenne primes.24]
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29. Let a and b ̸= 0 be natural numbers and r be the remainder of a when dividing by b.

Prove that for every integer t > 1, the remainder of ta − 1 when dividing by tb − 1 is

equal to tr − 1. Conclude that GCD(ta − 1, tb − 1) = tGCD(a,b) − 1.

30. Let k ≥ 1 be an integer such that 2k + 1 is prime. Prove: k = 2n for some n. Are all

numbers of the form 22
n
+ 1 prime?

[The number Fn = 22
n
+ 1 is called the n-th Fermat number.25]

31. Let n be positive and p be a prime divisor of Fn = 22
n
+ 1. Prove that 2̄ ∈ (Z/FnZ)

∗

is an element of order 2n+1. Deduce that p ≡ 1 mod 2n+1.

32. Take n > 1 and p and Fn as in the previous exercise, and define u = 22
n−2

mod Fn.

Prove that u has order 8 in (Z/FnZ)
∗ and that u − u3 has order 2n+2. Deduce that

p ≡ 1 mod 2n+2.

[For n = 5, it follows that p ≡ 1 mod 128. The two smallest values are p = 257 and

p = 641.]

33. For all n ≥ 1, determine the order of Fn−1 mod Fn in (Z/FnZ)
∗.

34. Let p be a prime and q be a prime divisor of the Mersenne number Mp = 2p−1. Prove:

q ≡ 1 mod p.

[Example: M11 = 2047 = 23 · 89 only has prime divisors that are 1 mod 11.]

35. Prove that every integer a satisfies the congruence a13 ≡ a mod 2730.

36. Show that for every element x ∈ (Z/7161Z)∗, the order of x is a divisor of 30. Does

there exist an element x ∈ (Z/7161Z)∗ of order 30?

37. Prove: φ(5186) = φ(5187) = φ(5188). Do we have limn→∞ φ(n) =∞?

38. Determine all n > 0 with φ(n) = 8. Do likewise for φ(n) = 14.

39. Let m,n > 0 satisfy φ(m)
m = φ(n)

n . Prove that m and n have the same prime divisors.

40. Determine all n > 0 such that n
φ(n) is an integer.

41. Determine an integer x that satisfies the congruences

x ≡ 1 mod 7,

x ≡ 5 mod 11,

x ≡ 1 mod 13.

To what extent is your answer uniquely determined?

42. Let G be cyclic of order n. Show that the number of elements of G that generate the

group is equal to φ(n). Deduce that Aut(G) ∼= (Z/nZ)∗.

43. Show that for every divisor d | n, a cyclic group of order n contains exactly φ(d)

elements of order d. Use this to prove Gauss’s formula:
∑

d|n φ(d) = n.

44. Determine for which primes p < 20 the group (Z/pZ)∗ is cyclic.

45. Let p be a prime. Prove that the binomial coefficients
(
p
i

)
for 1 ≤ i ≤ p−1 are divisible

by p, and deduce the congruence (x + y)p ≡ xp + yp mod p for x, y ∈ Z. Now, take

y = 1, and prove the congruence xp ≡ x mod p from 6.18 by induction on x.

46. Determine the smallest composite number n that satisfies the congruence 2n ≡ 2 mod n.

[Anyone who can program will be done quickly. . . ]
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47. Show that GLn(Fp) is a group of order (pn − 1)(pn − p)(pn − p2) . . . (pn − pn−1).

48. (Exercise 2.21 without a star) Show that the subgroup G ⊂ GL3(F3) given by

G = {

1 a b

0 1 c

0 0 1

 : a, b, c ∈ F3}

is a non-abelian group of order 27 and that x3 = id holds for all x ∈ G.

49. Let m and n be positive numbers with d = GCD(m,n) and k = LCM(m,n). Prove

that the rings Z/mZ× Z/nZ and Z/dZ× Z/kZ are isomorphic.

50. Show that the fact that the additive group of a ring R is abelian follows from the ring

axioms (R1)–(R3).

[Hint: look at (1 + 1)(a+ b).]

51. Let A be a ring and H ⊂ A be a subgroup of the additive group of A. Show that A/H

can be made into a ring and the quotient map π : A→ A/H into a ring homomorphism

if H satisfies the property

(∗) for a ∈ A and h ∈ H, we have ah ∈ H and ha ∈ H.

[Hint: look at (6.10). The subgroups in question are called ideals of A.]

52. State and prove the analog of the isomorphism theorem 4.10 for rings.

53. Let A = R[X] be the ring of polynomials with coefficients in R. Prove: A∗ = R∗.

54. Let A = (Z/4Z)[X] be the ring of polynomials with coefficients in Z/4Z. Prove: for all

f ∈ A, we have 1 + 2f ∈ A∗. Conclude that A∗ is an infinite group and therefore not

equal to (Z/4Z)∗.

55. Show that for elements x and y in a field, we have xy = 0⇒ x = 0 or y = 0.

*56. Let A = K[X] be the polynomial ring over a field K. Let f, g ∈ A be polynomials with

g ̸= 0. Prove that there exist polynomials q, r ∈ A with

f = qg + r and r = 0 or deg(r) < deg(g).

Deduce from this that for any two polynomials a, b ∈ A, there exists a polynomial d ∈ A
such that aA+ bA = {ax+ by : x, y ∈ A} is equal to dA = {dx : x ∈ A}.

*57. Let K be a field. A non-constant polynomial f ∈ A = K[X] is called irreducible if

it cannot be written as a product of two non-constant polynomials. Prove that an

irreducible polynomial p ∈ A has the prime property: p | ab ⇒ p | a or p | b. The

divisibility of polynomials is defined in the usual way.

*58. Let K be a field. Prove that every non-constant polynomial f ∈ K[X] can be written

as a product of irreducible polynomials and that this product is unique up to the order

of the factors and multiplication by constants.

59. Let n ∈ Z be a square, and suppose that the last four digits of n in decimal notation

are equal. Prove that n ends in four zeros. Does the same hold with “four” replaced

by “three” both times?

60. Show that for every m ∈ Z>0, the equation φ(n) = m! has a solution n ∈ Z>0.
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7 Factorization and Cryptography.

This section, which has a slightly different character than the other sections in these

course notes, gives some applications of Euler’s theorem 6.17 and Fermat’s little theo-

rem 6.18. These applications use the existence of computer equipment to quickly carry

out elementary operations on large numbers. Some of the exercises assume that the

reader has access to a somewhat advanced computation program such as Maple, Math-

ematica, Magma, or SAGE to routinely do calculations with large integers or modulo

a number n.

▶ Primality of Large Numbers

We begin by applying Fermat’s little theorem to recognizing large primes. This skill

will come in handy later.

Theorem 6.18 implies that if a number n is prime, then for all positive num-

bers a < n, we have the congruence an−1 ≡ 1 mod n. This congruence can be tested

“quickly” without first computing the often indecipherably large number an−1. Namely,

we can use the binary notation for the exponent n − 1, writing it as a sum n − 1 =∑N
k=0 ck2

k with digits ck ∈ {0, 1}. We can calculate the powers ā2
k
for k = 0, 1, . . . , N

by repeatedly squaring ā. Since the answer can be reduced modulo n after every squar-

ing, no numbers greater than n2 occur in this process. The binary representation of

n − 1 shows which powers ā2
k
must be multiplied to obtain ān−1. These are no more

thanN+1 powers, and we can reduce modulo n after every multiplication. We conclude

that we need at most 2N + 2 multiplications modulo n. Since N is not greater than
2logn, the number of multiplications grows only logarithmically with n. In complexity

theory, a subject on the boundary of mathematics and computer science that studies

the behavior of algorithms, calculations whose “time” is bounded by a polynomial ex-

pression in the length of the input are said to be of polynomial time, or polynomial

for short. This notion corresponds reasonably well to “efficient in practice.” Testing a

“Fermat congruence,” for which the order of size of the length of the input (a, n) (in

decimal or binary representation) is log n, is polynomial in this terminology.

7.1. Example. Let us test whether n = 250093 is prime. The number has no very

small prime factors, so we check whether 3250092 ≡ 1 mod n holds. To do this, we write

the exponent 250092 as the 18-digit binary number

250092 = 1111010000111011002.

By repeatedly squaring 3 mod 250093, we find the powers 32
k
mod 250093 for k =

0, 1, 2, . . . , 17. We need the ten values corresponding to k = 2, 3, 5, 6, 7, 12, 14, 15,

16, and 17. These are the residue classes of, respectively,

81, 6561, 174643, 85634, 205103, 39836, 49857, 46122, 197919, 114064.

We multiply these, reducing the outcome modulo n after each multiplication. The

result is 187705 mod 250093. We conclude that n is not prime. However, this does not

give a factor of n.
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Exercise 1. Verify that 3250092 has more than 100 000 decimals.

If for a number n, we find that for a few randomly chosen values of a, we have ān−1 ≡
1 mod n, then this is a strong indication that n is prime. However, this does not give a

proof that n is prime. More importantly, there are composite numbers n, the so-called

Carmichael numbers, for which the Fermat congruence an ≡ a mod n from 6.18 holds

for all a ∈ Z. For such n, we have ān−1 = 1̄ for all ā ∈ (Z/nZ)∗. Carmichael numbers

are quite rare, but it has been known since 1992 that there are infinitely many.26

Exercise 2. Verify that n = 3 · 11 · 17 = 561 and 1729 = 7 · 13 · 19 are Carmichael numbers.

Aside from the problems with any inverse of 6.18, testing any congruence for all a mod n

is as much work as trying all divisors of n and therefore not practical. So we can often

use the Fermat congruence to prove that certain numbers are composite but seldom

that they are prime. To prove that a number p is prime, we need to show that (Z/pZ)∗

has order p − 1 and not only that there are many elements in (Z/pZ)∗ whose order

divides p − 1. So in practice, often variants of the Fermat congruence are applied

that lead to what is also called a pseudoprime test. For these slightly more subtle

congruences, it has been proved that if n is not prime, then for at least half of all

a < n, the test congruence does not hold. This gives a probabilistic method to test the

primality of n. After all, if n is composite, the probability of finding k different values

of a in a row that satisfy the congruence is less than 2−k. For example, for k = 10,

the probability that a composite n passes the test is less than 1 in 1000. To be sure,

take k = 50; the probability of a mistake caused by an error in the hardware is usually

greater than the probability of 50 consecutive unfortunate choices for a. However, the

probability for such algorithms is never 0.

There are primality tests that require a little more time but give a true primality

proof for n if n is prime. Whether this can be done in polynomial time has long

remained open. It was not until 2002 that the Indian computer scientists Agrawal,

Kayal, and Saxena found a deterministic method, called the AKS-primality test using

their initials, which they proved to be polynomial. Older methods, which use relatively

advanced mathematics such as elliptic curves and cyclotomic fields, were already fast

enough that the primality of numbers with several thousand digits could be proved

using them.27

Large primes are not only easy to recognize; they are also easy to make in practice.

Indeed, there is the following quantitative version of Euclid’s theorem 6.5.

7.2. Prime theorem. Let π(x) be the number of primes less than x ∈ R. Then we

have

lim
x→∞

π(x) log x

x
= 1.

This famous theorem, already conjectured by Gauss before 1800, was only proved in

1896, by the French mathematicians Hadamard (1865–1963) and de la Vallée-Poussin

(1866–1962). The proof applies complex-analytic arguments to the Riemann zeta func-

tion, which for s > 1 is defined by ζ(s) =
∑∞

n=1 n
−s and has a natural continuation to

C \ {1}. This is beyond the scope of this course.28
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The prime number theorem is often written as π(x) ∼ x/ log x, where the symbol

∼ means that the quotient of the two functions approaches 1 as x → ∞. Based on

this theorem, we expect that in the neighborhood of a large number x, approximately

1 in log x numbers is prime. For x = 10100, this is 1 in 100 log(10) ≈ 230. There is

no theorem that guarantees that prime numbers are not occasionally unexpectedly far

apart; hence it may happen, in principle, that after 10100, there is a large “gap” in the

prime numbers. In practice, however, there are never any problems. For example, the

first ten primes after 10100 are the numbers 10100 + k with k = 267, 949, 1243, 1293,

1983, 2773, 2809, 2911, 2967, and 3469, which lie at intervals ranging from 790 to 36.

We summarize the above in the following informal way.

7.3. Fact. Large primes are easy to make.

▶ Large Number Factorization

The fact that we can easily determine whether a large number is prime does not mean

that if the number is composite, we can easily decompose it in factors. For instance,

the number in Example 7.1 has decomposition 250093 = 449 · 557, but that does not
follow from our “compositeness proof.” In this case, the prime divisors are so small

that they can easily be found using the method of trial division outlined after 6.7.

However, this method is not polynomial in the sense of complexity theory; for numbers

without small prime factors, it is exponential. Indeed, in the worst case, all divisors

d ≤
√
n of n must be tested. In practice, trial division is therefore often completely

unfeasible. For example, if we have a number n with 100 digits that is a product of

two approximately equally sized primes and a fast computer that can test a trillion

divisors per second, this method takes roughly 1050/1012 = 1038 seconds. To get an

idea of what such large numbers represent, note that there are about 3 · 107 seconds

in a year; on average, a human life lasts well over 2 · 109 seconds; and the estimated

age of the universe is around 1018 seconds. This shows that trial division for numbers

without small prime factors has no practical value.

The cryptographic application of Euler’s theorem we will now give is, in a sense,

a negative application. It relies on the fact that we cannot, for the time being, fac-

tor properly and will cease to exist upon the discovery of an efficient factorization

algorithm.

7.4. Carpenter’s wisdom. The decomposition of large integers is difficult.

In more mathematical terms, the wisdom above means that the best algorithms we

currently have to factor numbers n have a running time that is far from polynomial for

“many” n. In practical terms, this means that no one can factor composite numbers

with a few hundred digits without “easy” prime factors. Easy prime factors are factors

p that are sufficiently small to be quickly found by trial division or other exponential

methods.

▶ Cryptography

Cryptography owes its existence to the fact that there is a need to send messages in such
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a way that anyone other than the recipient cannot understand the message if it somehow

falls into wrong hands. In other words, the message must be sent in code, and no one

except the recipient must be able to decrypt it. The oldest applications of cryptography

are military, but nowadays, it is applied in far more areas. Modern communication

techniques such as mobile telephony, online banking, and online shopping require the

large-scale routine encryption of information sent through more or less public channels.

The RSA cryptosystem, named after its discoverers Rivest, Shamir, and Adleman, who

proposed the method in 1976, is a standard method for this. It is an example of a

public key cryptosystem. This means that, unlike in more traditional cryptosystems,

the key and the method for encoding messages are public. This has the advantage,

which is undoubtedly extremely practical in many modern applications, that there is

no need for a secret key to be agreed upon in advance between the sender and recipient,

with all the security problems that entails. The amazing thing is that even with this

apparent lack of secrets, information can still be sent that is virtually unreadable to

third parties.

▶ The RSA Cryptosystem

In the RSA system, we assume that the message to be sent consists of one or more

numbers of a fixed size, say 300 digits. For “letter messages,” the words can, for

example, be “digitized” as numbers by using a simple substitution (a = 01, b = 02,

c = 03, through space = 27; there is even room for 100 characters) and cutting up

the resulting long number into blocks with 300 digits. Someone who wants to receive

messages not readable by anyone else chooses two numbers that are made public, for

example by publishing them on a personal website. The first number is the personal

modulus n. This is a number n ≈ 10300 that the recipient makes by multiplying two

large primes of, say, 150 digits each. The factorization n = pq is kept secret, and unless

the choice of p and q is extremely awkward, with the current state of affairs, this means

that no one else can find the values of p and q.

Exercise 3. Why is the choice n = (10150 +67)(10150 +427), the product of the two smallest primes

with 151 digits, not safe? More generally, is it wise to choose two consecutive primes?

The second number the recipient discloses is the public exponent. This is a number

e > 1 whose most important property is that it is relatively prime to (p − 1)(q − 1).

This can be, for example, the smallest prime that does not divide (p − 1)(q − 1), but

in principle, every other number for which the Euclidean algorithm shows that it is

relatively prime to (p−1)(q−1) is good.29 We now use the following corollary of Euler’s

theorem 6.17.

7.5. Theorem. Let n = pq be a product of two distinct primes p and q, and let e > 1

be a number that is relatively prime to (p − 1)(q − 1). Then there exists a number

f > 0 with ef ≡ 1 mod (p− 1)(q − 1), and for such an f , we have

aef ≡ a mod n

for all a ∈ Z.
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Proof. Since e is invertible modulo (p− 1)(q− 1), there exist positive numbers f with

the stated property. For such f , we can write ef = 1 + r(p − 1)(q − 1) with r ∈ Z.

By 6.16, we have φ(pq) = (p− 1)(q − 1). Using 6.17 applied to n = pq, we now obtain

aef = a · ar(p−1)(q−1) ≡ a mod n for all a that are relatively prime to n = pq. If a is

divisible by p or q, then it easily follows from the proof of 6.18 that the congruence

also holds.

Exercise 4. Show that 7.5 also holds if we require ef ≡ 1 mod LCM(p− 1, q − 1).

To send a secret message N with 300 digits to a recipient with modulus n and public

exponent e, we compute the number N e mod n. As we have already seen, this can be

done efficiently by repeatedly squaring modulo n, and it is never necessary to compute

a large number like N e. For the system to work, no one other than the recipient must

be able to deduce the value of N mod n from that of N e mod n. (Note that once we

have N mod n, we also have N itself because we chose 0 < N < n.) This relies on the

fact that in practice, the only known way to deduce the value of N mod n from the

value of N e consists in determining an “inverse exponent” f as in Theorem 7.5. Indeed,

using the inverse exponent f , we can recover the original message N < n through a

second exponentiation: (N e)f ≡ N mod n. Other possible methods, such as trying out

exponents, cost way too much time.

Finding the inverse exponent f in 7.5 consists in finding the inverse of e modulo

(p− 1)(q − 1), and no one can do this other than the recipient, who knows the values

of p and q. Even the message’s sender, who knows not only N e but also N , cannot

find the inverse exponent f . So the recipient can guarantee the “unreadability” of all

received messages by choosing the values of p and q wisely and keeping the “secret

exponent” f secret.

Exercise 5. Show how to determine the factors p and q from n = pq and m = (p− 1)(q− 1). Factor

250093 = pq using the value 249088 = (p− 1)(q − 1).

7.6. Example. Suppose that we want to send the message “OK” to a recipient with

public exponent 23 and (unrealistically small) modulus 250093. We digitize the message

as indicated as 1511 and calculate 151123 ≡ 141886 mod 250093. The number 141886 is

now sent. The recipient, who has the factorization 250093 = 449·557, knows the inverse
of 23 modulo 448 · 556 = 249088, which is f = 129959. The calculation 141886129959 ≡
1511 mod 250093 is easily obtained and gives the original message 1511 = OK.

Exercise 6. Suppose that the recipient has public modulus 1111 and exponent 29. Decode the sent

message 607.

▶ Digital Signatures

There is a refinement of the RSA protocol described above where the sender A also

proves the message was sent by A and not by an impostor posing as A. Imagine the

situation where the recipient B is a bank and A is someone who sends payment orders.

The bank would then like to see a “digital signature” from A under those orders.

For this refinement, we need not only the public exponent eB and modulus nB of

the recipient B but also similar values eA and nA chosen by A. Here B is the only person
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who can decompose nB, and A is the only person who can decompose nA. Suppose

that we want to send a message N < nA < nB. To digitize a secret message N , person

A first replaces N with a number M < nA satisfying M ≡ N fA mod nA. Here fA is

A’s secret exponent, known to no one else than A. The sender A now transmits M as

before. This means that A sends the value M eB mod nB to B. Person B can raise this

to the power of their own secret exponent to deduce the value ofM and thus knows the

number N fA mod nA. To now obtain the original message, B takes the public exponent

eA and calculates the eA-th power of N fA mod nA modulo the modulus nA. This is

N eAfA = N mod nA, which gives N . Moreover, B now knows that the message comes

from A because no one other than A can raise the message to the power of the secret

exponent fA modulo nA.

Exercise 7. Is the assumption nA < nB essential?

▶ Safety of RSA

The safety of the RSA protocol relies on the assumption that no one can factor a well-

chosen 300-digit modulus without additional knowledge. When the RSA system was

introduced, in 1976, Rivest included an encoded message as a challenge. He used the

“secure” 129-digit number

RSA129 =1143816257578888676692357799761466120102182967212423625625618429\
35706935245733897830597123563958705058989075147599290026879543541

and said that he expected that the many millions of years of computer time needed

to factor this number would make this code practically unbreakable. Making predic-

tions turns out to be difficult here; the methods for decomposing large numbers have

drastically improved in the last 30 years.

In 1994, the number was factored using a method known as the quadratic sieve,

giving

RSA129 =3490529510847650949147849619903898133417764638493387843990820577·
32769132993266709549961988190834461413177642967992942539798288533.

This method uses many thousands of “auxiliary factorizations” contributed by com-

puter owners via email. Using the “number field sieve” developed in the early 1990s,

in 1996, the next “RSA challenge,” the 130-digit RSA key RSA130, was cracked.
30 The

number field sieve is a slightly more complicated algorithm that uses the arithmetic

of number fields. The optimization took some time, but it is now the method that

sets all records. In December 2009, a milestone was reached when the first 768-bit key

(232 decimal digits) was cracked. The 1024-bit keys (309 decimal digits) used by banks

have already been replaced by 2048-bit keys; the future will tell how long this will be

considered safe. The less than 35-year history of RSA shows that making predictions

about the development of factorization methods has so far proven tricky.
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▶ Discrete Logarithms

If someday, an efficient factorization algorithm is found that renders RSA useless as a

cryptosystem, there are various other public key cryptosystems that can still be used.

What is needed to make such systems is a mathematical procedure that is easy to carry

out in one direction but for which the “converse” is disproportionately more difficult.

The multiplication of primes p and q to obtain a large number n is such a procedure

for RSA since the converse, the decomposition of n in p and q, is not something we

have a fast algorithm for.

In group theory, there is a similar problem that is entirely within the scope of these

course notes, namely determining discrete logarithms. This appears to be a challenging

problem in some groups, but as in the case of factorization, there is no theorem that

a fast algorithm does not exist; perhaps we are clumsy, and a smart algorithm is just

around the corner for whoever knows enough mathematics!

LetG be a cyclic group of order n and g be a generator ofG. Then the isomorphism

f : Z/nZ
∼−→ G

k 7−→ gk

is a map for which the input k has length log n and the output ga can be calculated

in time polynomial in log n for many groups G. The discrete logarithm problem in

the group G consists in calculating the inverse of f . In other words, given an element

h ∈ G, determine an exponent k = f−1(h) ∈ Z/nZ such that we have gk = h. The

exponent k = f−1(h) is called the discrete logarithm of h ∈ G to the base g and is

written as

k = f−1(h) = logg(h).

The difficulty in computing f−1 depends very much on the choice of G. For example,

if G = Z/nZ and g = 1 mod n, then f is the identity, and there is no problem. If we

take another generator x for the additive group G = Z/nZ, then the discrete logarithm

problem for h ∈ Z/nZ is nothing but solving k from the equation kx = h. To do this,

it suffices to multiply both sides by the multiplicative inverse x−1 of x modulo n; this

inverse can be calculated using the Euclidean algorithm, as in 6.14. In this case, the

discrete logarithm problem can be solved in time polynomial in log n.

Exercise 8. Let g1 and g2 be generators of G. Prove: logg2(h) = logg1(h) logg2(g1).

An interesting choice for G is the multiplicative group G = (Z/pZ)∗ modulo a prime p;

this group has order n = p− 1.

7.7. Theorem. For a prime p, the group (Z/pZ)∗ is cyclic of order p− 1.

The proof of 7.7 relies on a fact that has more to do with rings than with groups. We

will see it again in 12.3 and 12.4.

7.8. Lemma. Let f = Xn + an−1X
n−1 + . . . + a1X + a0 be a polynomial of degree

n ≥ 1 with coefficients in Z/pZ. Then f has no more than n zeros in Z/pZ.
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Proof. We carry out the proof by induction on the degree of f . For n = 1 and

f = X + a0, −a0 is the only zero: inverses in the additive group Z/pZ are unique!

Now, let f be of degree n > 1 and x ∈ Z/pZ be a zero of f . Then we can write

f as f = (X − x)g for a polynomial g of degree ≤ n − 1. After all, since Xk − xk is

divisible by X − x for k ≥ 1, we have, explicitly,

f(X) = f(X)− f(x) =
∑n

k=0 ak(X
k − xk) = (X − x) ·

∑n
k=1 ak

∑k−1
j=0 x

k−1−jXj.

If y ̸= x is a second zero of f in Z/pZ, then we have (y − x)g(y) = 0. By the prime

property 6.6, a product of two elements in Z/pZ is only 0 if one of the elements is.

Since x− y ̸= 0, we must have g(y) = 0, so the zeros of f different from x are the zeros

of g. By the induction hypothesis, g has at most n− 1 zeros, and we are done.

Note that the assumption that p is prime is essential: in Z/24Z, the polynomial X2−1

has the eight zeros ±1,±5,±7,±11.

Proof of 7.7. Recall (Exercise 6.43) that for every positive divisor d | n, a cyclic group
of order n contains exactly φ(d) elements of order d, where φ is Euler’s φ function.

Summing over all d | n gives
∑

d|n φ(d) = #C = n, Gauss’s formula.

Let ψ(d) denote the number of elements of order d in (Z/pZ)∗. If x ∈ (Z/pZ)∗

has order d, then the d different powers x, x2, x3, . . . , xd = 1 of x are zeros of Xd− 1 in

Z/pZ. By 7.8, there are no other zeros of Xd − 1 in Z/pZ, so the elements of order d

in (Z/pZ)∗ are exactly the φ(d) powers xi of x with exponent i relatively prime to d.

We conclude that ψ(d) is equal to φ(d) if (Z/pZ)∗ contains an element of order d and

equal to 0 if that is not the case. We now have

p− 1 = #(Z/pZ)∗ =
∑

d|p−1 ψ(d) ≤
∑

d|p−1 φ(d) = p− 1,

and it follows that ψ(d) = φ(d) for all d|p − 1. In particular, we have ψ(p − 1) =

φ(p− 1) > 0, so (Z/pZ)∗ contains an element of order p− 1 and is cyclic.

See Exercise 16 for a proof of 7.7 that does not rely on Gauss’s formula.

A number a ∈ Z for which a mod p is a generator of (Z/pZ)∗ is called a primitive

root modulo p. Note that a number a that is not divisible by p is a primitive root

modulo p if and only if ad ̸≡ 1 mod p holds for all divisors d < p− 1 of p− 1.

Exercise 9. Show that a is a primitive root modulo p if p does not divide a and we have ad ̸≡ 1 mod p

for all exponents d = (p− 1)/ℓ, with ℓ running through the prime divisors of p− 1.

If p is a large prime and a is a primitive root modulo p, then for a given k, the

isomorphism

(7.9)
f : Z/(p− 1)Z

∼−→ (Z/pZ)∗

k 7−→ ak

can be calculated efficiently as in 7.1, by repeated squaring. However, determining the

inverse of f is a difficult problem, underlying several cryptographic routines. There are

91



Algebra I– §7

better methods than simply trying all possible values of k for f−1(b), but these methods

are still far too slow for large primes. As of 2014, the record stood at 180-digit primes.

There are several cyclic groups different from (Z/pZ)∗ in which it is possible to

take powers “quickly” but in which determining discrete logarithms seems complicated.

Cyclic groups generated by a point of large order on an elliptic curve over Z/pZ are

already used in cryptography, and arithmetic algebraic geometry has more groups in

store whose cryptographic merits are still being researched.

▶ Diffie–Hellman protocol

To conclude, we provide a protocol that allows two parties A and B to choose a public

channel what secret key they will use to encode messages to each other. The obvious

thought that such a thing is impossible turns out to be wrong, and the reason is of the

same kind as in the case of RSA: calculating ak ∈ (Z/pZ)∗ for given a ∈ (Z/pZ)∗ and

k ∈ Z is easy, but recovering k ∈ Z/(p − 1)Z from a and ak ∈ (Z/pZ)∗ is a discrete

logarithm problem that is difficult to carry out in practice for large p. More precisely, we

can do the first in polynomial time, whereas there are no known polynomial algorithms

for the second. People therefore say that for large p, the isomorphism f in 7.9 is a

one-way function.

The Diffie–Hellman protocol uses the “irreversibility” of 7.9 to allow A and B to

choose a secret key over a public line. To do this, they agree on a large prime p and a

primitive root g mod p “in public.” Next, each party chooses a strictly personal secret

exponent. Party A chooses the exponent a and sends ga to B. Likewise, B sends A the

element gb, where b is B’s secret exponent. Now A, who knows a but not b, calculates

the a-th power gab of the message gb received from B. Likewise, B, who knows b but

not a, calculates the b-th power gab of the message ga received from A. We see that

gab is an element that both A and B can easily calculate; this is chosen by A and B as

the secret key.

An unsuspecting eavesdropper on the public channel cannot calculate the key gab.

After all, this person knows p and g as well as the powers ga and gb but knows neither

secret exponent a or b. These are the discrete logarithms of ga and gb to the base g,

and the eavesdropper cannot calculate these if p is chosen sufficiently large. As far

as we know, there is no efficient method to calculate gab from ga and gb without first

calculating a or b. This makes us confident that this so-called Diffie–Hellman protocol

is a safe method for choosing a secret key.
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Exercises.

10. Let n = n0 be a natural number, and for k ≥ 0 and nk ̸= 0, define integers rk ∈ {0, 1}
and nk+1 ∈ Z inductively by setting nk = 2nk+1 + rk, where rk ≡ nk mod 2. Calculate

the numbers (rk)k for n0 = 250092, and prove in general that the number sequence

. . . r2r1r0 gives the binary representation of n.

11. Let a be an integer and p ∤ a be an odd prime. Prove: a(p−1)/2 ≡ ±1 mod p.

12. (Pseudoprimality tests.) Determine an odd number n that is composite and for which

the congruences 2(n−1)/2 ≡ ±1 mod n and 3(n−1)/2 ≡ ±1 mod n are satisfied.

[Try programming this pseudoprimality test. There are two solutions n < 10000.]

13. Decode the message 99099932142 sent to a recipient with public exponent 13 and mod-

ulus 246790125209.

[Hint: the last prime year of the 20th century is used in the modulus. . . ]

*14. (For the serious factorizer. . . ) Here is one last message, encoded with exponent e = 31

modulo n = 15241578753238836751577503665157706318489955952973821:

7937693314177547247598946714302495358389154176115486.

15. Let A be an abelian group, and suppose that A contains elements of finite orders a

and b. Prove that A contains an element of order LCM(a, b).

[Hint: first look at the case where a and b are relatively prime.]

16. Let A be an abelian group of order n. Define the exponent of A as the smallest positive

number e such that ae = 1 holds for all a ∈ A.

a. Prove: the number e is a divisor of n and is equal to n if and only if A is cyclic.

b. Deduce from 7.8 that the exponent of A = (Z/pZ)∗ is equal to p − 1 and that

(Z/pZ)∗ is therefore cyclic.

17. Determine primitive roots modulo 11, 31, 41, and 71.

18. Determine the six smallest prime numbers p > 2 for which 5 mod p is a primitive root.

What do you notice about the final digits of these primes?31 *Are there infinitely many

primes p for which 5 mod p is a primitive root?32

19. Show that 2 is a primitive root modulo 101, and calculate log2(3), log2(5), and log2(7)

in the group (Z/101Z)∗.
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8 Quotients and Products.

The construction of the quotient map G → G/N in 4.14 allows us to do all kinds of

“abstract group theory.” We begin with several general theorems on quotient groups

that are direct consequences of the definitions and the isomorphism theorem 4.10.

▶ Subgroups under Quotient Maps

The quotient G/N of a group Gmodulo a normal subgroup N is, in principle, “simpler”

than G; after all, we have “forgotten” information. So we can describe the subgroups,

normal subgroups, and quotients of G/N directly in terms of G.

8.1. Theorem. The subgroups of the quotient group G = G/N are of the form

H = H/N , with H ⊂ G a subgroup of G that contains N . For such H,

f : G/H −→ G/H

gH 7−→ gH

is a bijective map between the sets of left cosets. In particular, we have [G : H] =

[G : H], and H is normal in G if and only if H is normal in G. In the normal case, f

is a group isomorphism.

Proof. If X ⊂ G/N is a subgroup and π : G → G/N is the quotient map, then

H = π−1[X] is a subgroup of G that contains N = ker π. Since π is surjective, we have

X = π[H] = H/N , so X is of the required form.

For H ⊃ N as above, f : G/H → G/H is well defined and surjective. If g1, g2 ∈ G
satisfy g1H = g2H, then we have g1 = g2h = g2h and g1 = g2hn for some h ∈ H and

n ∈ N ⊂ H. Since hn ∈ H, we have g1H = g2H, so f is also injective. The resulting

bijection immediately gives the index equality [G : H] = [G : H].

If H is normal in G or H is normal in G, then G/H and G/H inherit the structure

of a group from G. In this case, f is an isomorphism.

Exercise 1. For a normal subgroup H ⊃ N of G, deduce the isomorphism in 8.1 by applying the

isomorphism theorem to the canonical map G/N → G/H.

We can ask what happens to an arbitrary subgroup H ⊂ G under the quotient map

π : G → G/N . The image π[H] is the subgroup of G/N consisting of the residue

classes hN with h ∈ H. By 8.1, this corresponds to a subgroup of G that contains N ,

namely HN = {hn : h ∈ H,n ∈ N}.

8.2. Theorem. Let N ◁ G be a normal subgroup and H ⊂ G be a subgroup. Then

there is a natural isomorphism

H/(H ∩N)
∼−→ HN/N.

Proof. The restriction of the quotient map π : G→ G/N to H gives a homomorphism

H → G/N with kernel H ∩N and image HN/N . The isomorphism theorem 4.10 now

gives an isomorphism H/(H ∩N)
∼−→ HN/N .
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We can visualize the statements of Theorems 8.1 and 8.2 using diagrams that show the

various arrows and inclusions. The convention is that all inclusions are indicated by

connecting lines going up straight or at an angle. In the diagrams below, the mark “=”

indicates pairs of inclusions that lead to isomorphic quotients. The inclusions marked

with “◦” are the subject of Theorem 8.1.

G G= G/N

H H= H/N

N 1

1

π

◦ ◦

= =

G

HN

N
H

H ∩N

1

=

=

8.3. Examples. 1. Let a and b be positive integers, and take H = aZ and N = bZ

in 8.2. By definition 6.3.3, H +N (the additive equivalent of HN) and H ∩N are the

subgroups of the additive group Z generated by, respectively, GCD(a, b) and LCM(a, b).

The quotient groups aZ/LCM(a, b)Z and GCD(a, b)Z/bZ are isomorphic by 8.2. So

their orders LCM(a, b)/a and b/GCD(a, b) are the same, leading to the equality

GCD(a, b) · LCM(a, b) = ab

known from Exercise 6.20

2. The symmetric group G = S4 of order 24 has a normal subgroup N = V4
consisting of (1) and the three products of two disjoint 2-cycles. If we apply 8.2 to the

non-normal subgroup H = S3 of permutations that fix the element 4, then we have

H ∩N = 1, and we find an isomorphism S3
∼−→ S3V4/V4. Since S3 has order 6 and V4

has order 4, S3V4 has order 24 and is therefore equal to S4. We obtain an isomorphism

S3
∼−→ S4/V4. This is the inverse of the isomorphism S4/V4

∼−→ S3 induced by the

“tetrahedron homomorphism” T = S4 → S3 from §5.
The symmetric group S3 contains a normal subgroup A3 of index 2 and three non-

normal subgroups of index 3. If we apply 8.1 to the quotient map π : S4 → S4/V4 ∼= S3,

then it follows that S4 contains a normal subgroup of index 2 and three non-normal

subgroups H1, H2, H3 ⊂ S4 of index 3. The subgroup of index 2 is A4. The three

non-normal subgroups Hi, which have order 8, each contain V4 as a subgroup. Every

subgroup of S4 generated by V4 and a 2-cycle is equal to one of the Hi.

Exercise 2. Show that the three subgroups Hi ⊂ S4 are isomorphic to D4 and are mapped to one

another by inner automorphisms of S4.

Example 8.3.2 shows that Theorems 8.1 and 8.2, which give relations between the

groups G and G/N , allow us to transfer information in either direction. In the example
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above, we first used a subgroup H = S3 of G = S4 to understand the quotient G/N =

S4/V4 and then our explicit knowledge of this quotient to find subgroups of S4 of

order 8.

▶ Homomorphism Theorem

The homomorphism theorem tells us when a homomorphism f : G → G′ factors

through the quotient group G/N . By this, we mean that f can be written as a “prod-

uct” f = fπ of the quotient map π : G→ G/N and a homomorphism f : G/N → G′.

The existence of such a factorization implies that N is contained in ker(f).

8.4. Homomorphism theorem. Let f : G → G′ be a homomorphism and N be a

normal subgroup of G contained in ker(f). Then there exists a unique homomorphism

f : G/N → G′ such that f is the composition

G
π−→ G/N

f−→ G′

of the quotient map π : G→ G/N and f .

Proof. A map f : G/N → G′ with the stated property is necessarily given by gN 7→
f(g), so we must show that with this definition, f is a well-defined homomorphism.

If g1N = g2N , then we have g1 = g2n for some n ∈ N ⊂ ker(f). Since f(n) = e′,

we have f(g1) = f(g2n) = f(g2)f(n) = f(g2), so f is well defined. The homomorphism

property of f follows from that of f :

f(g1N · g2N) = f(g1g2N) = f(g1g2) = f(g1)f(g2) = f(g1N)f(g2N).

Exercise 3. Prove: ker(f) = ker(f)/N . How does 4.10 follow from this?

In short, the characterization of the quotient map π : G → G/N given by 8.4 is that

all homomorphisms from G that are trivial on N go through the quotient G/N .

The homomorphism theorem 8.4 is often formulated as saying that there is a

unique homomorphism f : G/N → G′ for which the diagram

G G′

G/N

f

π f

commutes or is commutative. In general, a diagram is said to be commutative if

whenever there are two ways to follow the arrows of the diagram from one group to

another, the corresponding homomorphism compositions are equal. For example, a

square diagram

G1 G2

G3 G4

f

g h

j
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is commutative when the compositions hf and jg give the same homomorphism G1 →
G4. So-called commutative algebra, a part of algebra we will be introduced to later,

frequently expresses itself in terms of such diagrams.

▶ Commutator Subgroup

As an application of 8.4, we consider the case where N is the commutator subgroup

[G,G] ⊂ G. By definition, this is the subgroup of G generated by all commutators

[x, y] = xyx−1y−1

of elements x, y ∈ G. The identity [σ(x), σ(y)] = σ([x, y]) for σ ∈ Aut(G) shows that

an automorphism of G permutes the commutators. So the commutator subgroup is

invariant under automorphisms and is therefore a characteristic subgroup of G. Since

[G,G] is, in particular, invariant under all inner automorphisms σ ∈ Inn(G), it is a

normal subgroup of G.

The quotient Gab = G/[G,G] is called the abelianization of G or G made abelian.

After all, by the definition of the commutator subgroup, for any two elements x, y ∈
Gab, we have the relation x̄ȳx̄−1ȳ−1 = e, and so x̄ȳ = ȳx̄. The group Gab is also called

the maximal abelian quotient of G. If G itself is abelian, we have [G,G] = {e} and

Gab = G.

Exercise 4. Show that G/N is abelian if and only if we have N ⊃ [G,G].

Every homomorphism f : G → A to an abelian group A sends the commutators of G

to the unit element eA ∈ A:

f([x, y]) = f(xyx−1y−1) = f(x)f(y)f(x)−1f(y)−1 = f(x)f(x)−1f(y)f(y)−1 = eA.

It follows that [G,G] is contained in ker(f), and 8.4 gives the following statement.

8.5. Theorem. Let f : G → A be a homomorphism to an abelian group A. Then

there exists a homomorphism fab : Gab = G/[G,G]→ A such that f is the composition

G
π−→ Gab

fab−→ A

of the canonical map π : G→ Gab and fab.

It follows from 8.5 that giving a homomorphism G → A to an abelian group is “the

same” as giving a homomorphism Gab → A: the map fab 7→ fabπ gives a bijection

Hom(Gab, A)⇐⇒ Hom(G,A).

8.6. Corollary. Every homomorphism f : Sn → A to an abelian group A is the

composition

Sn
ε−→ {±1} f−→ A

of the sign map ε and a homomorphism f : {±1} → A.
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Proof. By 8.5, it suffices to prove that the alternating group An = ker ε is equal to

the commutator subgroup of Sn. Since every commutator xyx−1y−1 in Sn is an even

permutation, we have [Sn, Sn] ⊂ An. For the other inclusion, by 2.10, it suffices to

write every 3-cycle as a commutator. For n ≤ 2, there is nothing to prove; for n ≥ 3,

the identity

[(a b), (a c)] = (a b)(a c)(a b)(a c) = (a b c)

shows that every 3-cycle is a commutator. This gives An = [Sn, Sn].

8.7. Example. Hamilton’s quaternion group Q, named after the Irishman William

Rowan Hamilton (1805–1865), consists of the eight elements ±1, ±i, ±j, and ±k and

has a group structure given by the identities

i2 = j2 = k2 = ijk = −1 and (−1)2 = 1.

The rule that can be deduced from this for the elements i, j, and k of order 4 is that

the product of two consecutive ones in “clockwise” direction on the circle below equals

the third. So, jk = i and ki = j. Going counterclockwise gives the opposite results:

kj = −i and ik = −j.
i

k j

The element −1, which is a power of both i and j, commutes with all elements of

Q = ⟨i, j⟩. It is a generator of the center Z(Q) = {±1} of Q.
The commutator subgroup [Q,Q] is also equal to {±1} because any two non-

commuting elements of Q have commutator −1. In the quotient group Q/[Q,Q], the

three non-trivial elements i, j, and k each have order 2, and the product of two of

them is equal to the third. Apparently, the abelianization Qab of the quaternion group

is isomorphic to the Klein four-group V4.

*Exercise 5. Show that Q has exactly 24 different automorphisms. What group is Aut(Q)?

In addition to the already known vector addition, the 4-dimensional real vector space

H = R · 1 + R · i + R · j + R · k admits a natural non-commutative ring structure.

Multiplication in Hamilton’s quaternion algebra, which contains the field of complex

numbersC = R·1+R·i as a subring, is done by systematically applying the distributive

property (R3) from 6.8 and the multiplication rules for i, j, and k:

(a+ bi+ cj + dk) ·(a′ + b′i+ c′j + d′k) =

(aa′ − bb′ − cc′ − dd′) + (ab′ + a′b+ cd′ − c′d)i+
(ac′ + a′c+ db′ − d′b)j + (ad′ + a′d+ bc′ − b′c)k.

We will not discuss this ring further in these course notes.
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▶ Direct Product

The previous theorem in this section illustrates the well-known group-theoretic fact

that a group G can often be studied through its quotients G/N for suitable normal

subgroups N ◁G. In most cases, N and G/N are both “smaller” and therefore “easier”

to study than G itself. In the remainder of this section, we study the important

question to what extent G can be “reconstructed” from a normal subgroup N and the

corresponding quotient G/N . Sometimes, G can be recovered as the “product” of N

and G/N . Let us first consider general products of groups.

The simplest way to make a product group from two groups G1 and G2 is by

constructing the direct product G1 ×G2. We already came across this construction in

the Chinese remainder theorem 6.15. This shows that forming products is possible not

only for groups but also for other categories of objects.

As a set, the group G1 ×G2 is the Cartesian product

G1 ×G2 = {(x1, x2) : x1 ∈ G1, x2 ∈ G2},

and we take coordinate-wise multiplication

(x1, x2) · (y1, y2) = (x1y1, x2y2)

as the binary operation. This gives a group with unit element (e1, e2). The inverse of

(x1, x2) is the element (x−1
1 , x−1

2 ). We can define products∏n
i=1Gi = G1 ×G2 × . . .×Gn

of n groups likewise: take the Cartesian product of the sets and carry out the group

operations coordinate-wise. The projection πi : G1 × G2 × . . . × Gn → Gi onto the

i-th coordinate is a surjective group homomorphism for all i. The n-tuple product of

a group with itself is often denoted by Gn. For example, the product C2
2 = C2 × C2

of the cyclic group of order 2 with itself is an abelian group of order 4 in which all

elements satisfy x2 = e. We know from §1 that this means that C2 × C2 is isomorphic

to the Klein four-group V4.

For abelian groups A1 and A2 denoted additively, the direct product is called the

direct sum and denoted by A1 ⊕ A2. The additive group of the vector space Rn is a

direct sum of n copies of the additive group R. Every choice of a basis in a real vector

space V of dimension n is in fact the choice of an isomorphism Rn ∼−→ V . Thus, a

vector space can be isomorphic to a direct sum of 1-dimensional subspaces in many

ways.

The product group G1 × G2 contains subgroups G1 × 1 and 1 × G2 that are

isomorphic to G1 and G2 and are often identified with G1 and G2. So to write a group

G as a product of smaller groups, we must find subgroups H1, H2 ⊂ G for which there

is an isomorphism H1×H2
∼−→ G given by “multiplying coordinates”: (x, y) 7→ xy. For

example, if G = V4 = {e, a, b, c} is the Klein four-group, then H1 = ⟨a⟩ and H2 = ⟨b⟩
are cyclic subgroups of order 2, and we can make the isomorphism C2 × C2

∼−→ V4
explicit by defining

⟨a⟩ × ⟨b⟩ ∼−→ V4
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by (x, y) 7→ xy. More generally, the following theorem helps us establish that a group

can be obtained as a direct product of two subgroups.

8.8. Theorem. Let H1 and H2 be subgroups of G for which we have

1. H1 ∩H2 = 1;

2. H1H2 = {h1h2 : h1 ∈ H1 and h2 ∈ H2} = G;

3. for h1 ∈ H1 and h2 ∈ H2, we have h1h2 = h2h1.

Then the map (h1, h2) 7→ h1h2 defines a group isomorphism

H1 ×H2
∼−→ G.

There are surjections π1 : G→ H1 and π2 : G→ H2 with kerπ1 = H2 and kerπ2 = H1.

Proof. Let f : H1 ×H2 → G be the indicated map. Property (3) implies that f is a

homomorphism:

f((h1, h2)(h̃1, h̃2)) = f(h1h̃1, h2h̃2) = h1h̃1 · h2h̃2 = h1h2 · h̃1h̃2 = f((h1, h2))f((h̃1, h̃2)).

For (h1, h2) ∈ ker(f), we have h1h2 = e, so h1 = h−1
2 ∈ H1 ∩ H2 = 1. This gives

(h1, h2) = (e, e), and f is injective by 4.4. By (2), f is also surjective, hence an

isomorphism. The mentioned surjections are the “projections onto the coordinates”

given by π1 : h1h2 7→ h1 and π2 : h1h2 7→ h2.

Exercise 6. Show that we can replace condition (3) in Theorem 8.8 with “H1 and H2 are normal in

G.”

Exercise 7. Generalize 8.8 to isomorphisms H1 ×H2 × . . .×Hn
∼−→ G.

8.9. Examples. 1. The multiplicative group R∗ contains a sign subgroup {±1} and
a subgroup R>0 of positive real numbers that satisfy the conditions in 8.8. This gives

an isomorphism {±1} ×R>0
∼−→ R∗.

2. Likewise, the multiplicative group of complex numbers C∗ can be obtained as

a product C∗ ∼= T × R>0 of the circle group T = {z ∈ C∗ : |z| = 1} and R>0. The

isomorphism for R∗ is obtained from this by restriction.

3. The group K of symmetries of the cube has a subgroup K+ of rotation sym-

metries and a subgroup ⟨−1⟩ generated by the central point reflection −1. We already

saw in §5 that these subgroups of K satisfy conditions 8.8.1 and 8.8.2. To see that

they also satisfy 8.8.3, we view the rotation symmetries as linear maps R3 → R3 by

taking the center of the cube as the origin in R3. The central point reflection is then

given by the scalar multiplication by −1, which commutes with all linear maps. So for

the cubic group, we have

K ∼= ⟨−1⟩ ×K+ ∼= C2 × S4.

4. Let A be an abelian group of order mn, with m,n ∈ Z>0 relatively prime

numbers. Since A is abelian,

Am = {a ∈ A : am = 1} and An = {a ∈ A : an = 1}
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are subgroups of A. We have Am∩An = 1 because an element whose order divides both

m and n has order GCD(m,n) = 1. If we choose x, y ∈ Z such that nx+my = 1, then

an element a ∈ A can be written as a = anx+my = anx · amy. We now have anx ∈ Am
because (anx)m = amnx = 1 and, likewise, amy ∈ An. It follows that Am and An satisfy

the conditions of Theorem 8.8, and we obtain A ∼= Am × An. Since the order of Am is

relatively prime to n (why?) and that of An is relatively prime to m, comparing orders

gives #Am = m and #An = n.

If we repeatedly apply the “decomposition” of A in Example 8.9.4, we find that every

finite abelian group of order n =
∏

p p
np is the product of abelian groups of orders pnp .

In terms of the Sylow p-subgroups introduced at the end of §5, the conclusion is as

follows.

8.10. Theorem. Every finite abelian group is the direct product of its Sylow p-

subgroups.

▶ Semi-direct Product

The subgroups H1 and H2 in 8.8 are both normal in G because they are the kernels of

the projection maps π1 and π2. Roughly speaking, Theorem 8.8 boils down to the fact

that if we have G/H1 = H2 and G/H2 = H1, then the group G is a direct product of

H1 and H2.

In many situations, the condition that H1 and H2 are both normal in G is not

satisfied, and only one of the two groups is the quotient of G modulo the other. In this

asymmetric situation, we have a normal subgroup N ⊂ G and a subgroup H ⊂ G for

which the natural map H → G/N is an isomorphism. In this case, we can describe G

as the semi-direct product of N and H.

At first glance, the definition of the semi-direct product looks somewhat compli-

cated, so we will first look at the example of the group I2(R) of plane isometries from

§3. This group contains a subgroup T of translations and an orthogonal subgroup

O2(R) of linear isometries. The identity is the only element of the intersection of

these subgroups, and we proved in 3.3.1 that every element φ ∈ I2(R) can be written

uniquely as a product φ = τψ of a translation τ and an orthogonal map ψ. Condi-

tions (1) and (2) of 8.8 are now satisfied, but (3) is not. For while taking the linear

component from 3.9 induces a “projection map” L : I2(R) → O2(R) with kernel T ,

the situation is not symmetric in T and O2(R) because it follows from 3.10 that T is

normal in I2, whereas O2(R) is not. That means that the correspondence τψ ↔ (τ, ψ)

gives a bijection

I2(R)↔ T ×O2(R),

but the group operation on I2(R) does not correspond to the group operation on the

direct product. To see what the “right” group operation T ×O2(R) is, we take a closer

look at the relation

ψτxψ
−1 = τψ(x)

given in (3.10). This relation says that if we identify T with R2 in the obvious way,

then the conjugation action of O2(R) on T = R2 is the “same” as the natural action
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of O2(R) on R2. With this knowledge, we can explicitly take products of translations

and orthogonal maps:

(8.11) τx1ψ1 · τx2ψ2 = τx1(ψ1τx2ψ
−1
1 ) · ψ1ψ2 = τx1τψ1(x2) · ψ1ψ2.

So the multiplication on the “orthogonal component” is the usual multiplication, but

the multiplication on the “translation component” is not. The presence of a non-trivial

conjugation action of O2(R) on T makes the group operation 8.11 on T × O2(R) into

an example of semi-direct multiplication.

In general, we can make semi-direct products by letting a group H “act” on a

group N . By this, we mean that for every element h ∈ H, we have an automorphism

σh ∈ Aut(N) and that, as in the case of conjugation actions, we have the identity

σh1σh2 = σh1h2 . The latter simply means that the map σ : H → Aut(N) given by

h 7→ σh is a group homomorphism. This can be expressed evocatively by using the

“exponential notation” σh(n) =
hn with rule h1(h2n) = h1h2n.

8.12. Proposition. Let N and H be groups and σ : H → Aut(N) be a homomor-

phism, and write σ(h)(n) = hn. Then the operation

(n1, h1)(n2, h2) = (n1
h1n2, h1h2)

defines a group action on the product set N ×H.

Proof. The definition is chosen to imitate exactly what occurs for I2(R). If we view

N and H as subsets of N × H through n 7→ (n, eH) and h 7→ (eN , h), then the

given operation induces the “usual” multiplication on N and H, and every group

element can be written as a product (n, h) = (n, eH)(eN , h) = nh. The automorphism

σ(h) ∈ Aut(N) is now literally the conjugation by h:

hnh−1 = (eN , h)(n, eH)(eN , h
−1) = (hn, eH) =

hn = σ(h)(n).

This means that we can multiply products of the form nh by first concatenating them

and then moving all h to the right using the “conjugation trick” (8.11). The unit

element is e = (eN , eH), and it follows from (nh)−1 = h−1n−1 = h−1
(n−1)h−1 that the

inverse of (n, h) is (h
−1
(n−1), h−1). The reader can check the associative property as an

exercise.

The group obtained in 8.12 is called the semi-direct product of N and H with respect

to the map σ and is denoted by N ⋊σ H or N ⋊ H for short. If σ : H → Aut(N) is

the trivial homomorphism, then we always have hn = n, and the semi-direct product

is nothing but the direct product.

As in the proof of 8.12, we view N and H as subgroups of N ⋊H. The subgroup

N , which is invariant under conjugation with elements of both N and H, is normal

in N ⋊ H. The symbol ⋊, which is related to the symbol ◁, expresses this fact. The

analog of 8.8 for semi-direct products reads as follows.
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8.13. Theorem. Let N and H be subgroups of G for which we have

1. N ∩H = 1;

2. NH = {nh : n ∈ N and h ∈ H} = G;

3. N is normal in G.

If σ : H → Aut(N) is the map that describes the conjugation action of H on N , then

the map (n, h) 7→ nh defines a group isomorphism

N ⋊σ H
∼−→ G.

The map nh 7→ h gives a surjection G→ H with kernel N .

Proof. The semi-direct product is defined precisely so that the map in question is a

homomorphism. It is injective by (1) and surjective by (2), hence an isomorphism. It

follows from 8.12 that the projection onto the H-component is a surjective homomor-

phism; its kernel is clearly N .

Exercise 8. Show that H in 8.13 is only normal in G if σ is trivial and that in that case, G is the

direct product of N and H.

Theorem 8.13 is much more generally applicable than 8.8 because we only require

“G/N = H” and not also “G/H = N .” However, because of this, the obtained

product N ⋊σ H is not “symmetric” in N and H.

8.14. Examples. 1. The affine group Aff(R) is the subgroup of S(R) consisting of

the bijections

{x 7→ ax+ b : a ∈ R∗, b ∈ R}.

We obtain subgroups H = R∗ and N = R by letting a ∈ R∗ and b ∈ R correspond

to, respectively, the maps σa : x 7→ ax and τb : x 7→ x+ b. The intersection of the two

subgroups contains only the identity, and every affine map is the unique composition of

a multiplication x 7→ ax and a translation x 7→ x+b. The subgroup R of translations is

normal, and the conjugation action of R∗ on R in Aff(R) is the natural multiplication:

(σaτbσ
−1
a )(x) = a(a−1x+ b) = x+ ab = τab(x).

We conclude that Aff(R) is a semi-direct product R ⋊ R∗ with respect to the map

R∗ → Aut(R) given by a 7→ σa.

2. The dihedral group Dn contains a normal subgroup N = Cn of index 2,

generated by a rotation ρ of order n, and a subgroup H = C2 = ⟨σ⟩ of order 2

generated by a reflection. Every element is a unique product of an element of Cn and

an element of C2, and by (3.6), the conjugation action of the non-trivial element σ ∈ C2

on Cn is described by the identity σρσ = ρ−1. This means that the corresponding map

C2 → Aut(Cn) sends the generator of C2 to the automorphism of Cn that inverts all

elements. We find that

Dn
∼= Cn ⋊ C2

is a semi-direct product of a cyclic group of order n and a group of order 2 that acts by

inversion. More generally, for every abelian group A, we can construct a generalized

dihedral group A⋊ C2 by letting C2 act on A by inversion.
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3. In 8.3.2, we saw that the symmetry group S4 contains a normal subgroup

N = V4 and a subgroup H = S3 that satisfy the conditions of 8.13. The conjugation

action σ : S3 → Aut(V4) of S3 on V4 is (cf. Exercise 4.35) an isomorphism. The obtained

isomorphism

S4
∼= V4 ⋊ S3

∼= V4 ⋊ Aut(V4)

shows that S4 can be constructed from V4 by taking the semi-direct product of V4 and

its automorphism group.

4. For every group G, we can form the product G ⋊ Aut(G) with respect to the

natural action of Aut(G) on G.

For the cyclic group G = Z/nZ, we have

(8.15) Aut(G) = (Z/nZ)∗.

After all, an element σ ∈ Aut(Z/nZ) with σ(1̄) = ā is given by σ(x̄) = ax. The map σ

is only an automorphism for ā ∈ (Z/nZ)∗; this gives the identification Aut(Z/nZ) =

(Z/nZ)∗. The semi-direct product G ⋊ Aut(G) = Z/nZ ⋊ (Z/nZ)∗, which is the

analog of 8.14.1 for the ring Z/nZ instead of R, is called the affine group Aff(Z/nZ)

over Z/nZ.

Exercise 9. Prove: there are isomorphisms Aff(Z/3Z) ∼= S3 and Aff(Z/4Z) ∼= D4.
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Exercises.

10. Let f : G → G′ be a homomorphism and N ′ ◁ G′ be a normal subgroup. Prove:

N = f−1[N ′] is normal in G. Also show that a surjective homomorphism f induces an

isomorphism G/N
∼−→ G′/N ′.

11. Determine all subgroups of A4, and check which are normal.

12. Give an example of a group G with subgroups H1 and H2 for which we have H1 ◁ H2

and H2 ◁ G but not H1 ◁ G.

13. Let Dn be the dihedral group of order 2n from §3 and ρ ∈ Dn be a rotation of order n.

Prove that [Dn, Dn] is generated by ρ2, and deduce that

(Dn)ab ∼=
{
{±1} if n odd is,

V4 if n even is.

14. Determine the subgroups of Dn of index 2 for n ≥ 1.

15. Determine the numbers of elements of Hom(Sn,C), Hom(Sn,C
∗), and Hom(Dn,C

∗)

for n ≥ 1.

16. Let A be an abelian group written additively and n ≥ 2 be an integer. Give an explicit

bijection between Hom(Sn, A) and the 2-torsion subgroup A[2] = {a ∈ A : 2a = 0}
of A.

17. Let G be a group and N ⊂ G be the subgroup generated by S = {g2 : g ∈ G}. Prove:

N is normal in G, and G/N is abelian.

18. Calculate the commutator [(1 2 3), (1 4 5)] ∈ A5, and prove that for n ≥ 5, the

commutator subgroup [An, An] is equal to An.

19. Determine [An, An] for n ≤ 4.

20. Determine the number of elements of Hom(An,C
∗) for n ≥ 1.

21. Let f : G → G′ be a homomorphism. Prove that there exists a homomorphism fab :

Gab → G′
ab such that the diagram

G G′

Gab G′
ab

f

fab

with natural vertical arrows commutes.

[The abelianization of a group is said to be functorial: not only the groups but also the

maps between them can be made abelian.]

22. Let H1 and H2 be finite subgroups of G with H1 ∩ H2 = 1. Prove that the number

of elements of the set H1H2 = {h1h2 : h1 ∈ H1 and h2 ∈ H2} is equal to #H1 ·#H2.

Show that H1H2 is a subgroup of G if G is abelian, and give a non-abelian example

where this is not the case.

23. Let N1 and N2 be normal subgroups of G with N1 ∩N2 = 1. Prove: for n1 ∈ N1 and

n2 ∈ N2, we have n1n2 = n2n1. Deduce that G contains a subgroup isomorphic to

N1 ×N2.
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24. Let N1 and N2 be as in the previous exercise. Prove that G/N1 × G/N2 contains a

subgroup isomorphic to G.

25. Show that there is a natural bijection Hom(X,G1×G2)↔ Hom(X,G1)×Hom(X,G2)

for any three groups G1, G2, X. Does something similar hold for Hom(G1 ×G2, X)?

26. Let SL3(R) be the group of matrices with determinant 1 in GL3(R). Prove: there is

an isomorphism

R∗ × SL3(R)
∼−→ GL3(R).

Does the dimension 3 matter?

27. Determine the center Z(K) of the cubic group.

28. Give an example of a group G with

a. isomorphic normal subgroups N1 and N2 for which G/N1 and G/N2 are not iso-

morphic,

b. non-isomorphic normal subgroups N1 and N2 for which G/N1 and G/N2 are iso-

morphic.

29. Show that for n > 2, there exists an injective homomorphism Dn → Aff(Z/nZ) and

that this is only an isomorphism for n ∈ {3, 4, 6}.

30. Show that the affine group Aff(R) is isomorphic to the matrix group

{
(
a b
0 1

)
: a ∈ R∗, b ∈ R} ⊂ GL2(R).

31. Show that the matrix group {
(
a b
0 a

)
: a ∈ R∗, b ∈ R} ⊂ GL2(R) is isomorphic to a

direct product R∗ ×R.

*32. Show that SL2(R) is generated by the matrices of the form ( 1 x0 1 ) and ( 1 0
x 1 ) with x ∈ R.

33. Determine [GL2(R),GL2(R)], and show that every homomorphism f : GL2(R) → A

to an abelian group A factors through the determinant map det : GL2(R)→ R∗.

[Hint: calculate commutators such as [( 1 x0 1 ), (
y 0
0 y−1 )], and use the previous exercise.]

34. Show that for n ≥ 3, the group Sn is isomorphic to a semi-direct product An ⋊C2 and

that the conjugation action σ : C2 → Aut(An) depends on the choice of the subgroup

C2 ⊂ Sn.

35. In a semi-direct product G = N ⋊H, is every normal subgroup N ′ ◁ N also a normal

subgroup of G?

36. Let A be an abelian group and G = A⋊ C2 be the corresponding generalized dihedral

group from 8.14.2.

1. Show that every subgroup H ⊂ A is normal in G.

2. Determine the center Z(G) of G.

3. Determine the abelianization Gab.

37. (Goursat’s lemma)33 Let H ⊂ G1 ×G2 be a subgroup, and assume that the images of

H under the projections onto the coordinates equal G1 and G2. Define

N1 = {g1 ∈ G1 : (g1, e2) ∈ H} and N2 = {g2 ∈ G2 : (e1, g2) ∈ H}.
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Prove that N1 and N2 are normal in, respectively, G1 and G2 and that H is the “graph”

of an isomorphism ϕ : G1/N1
∼−→ G2/N2, in other words, that

H = {(g1, g2) ∈ G1 ×G2 : ϕ(g1N1) = g2N2}.

38. Prove that every subgroup of C5×S4 is of the form 1×H or C5×H with H a subgroup

of S4.

39. Determine the numbers of subgroups of C5 × C5 and C5 × C25.

40. Let f : Sm → Sn be a homomorphism. Prove: f [Am] ⊂ An.

41. Let Gn be the n-tuple product of G with itself, and let Cn act on Gn by cyclic shifting

as in the proof of 5.13. Show that this leads to a semi-direct product Gn ⋊ Cn, the

wreath product G ≀Cn of G and Cn. What group is C2 ≀C2?
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9 Abelian Groups

The product constructions in §8 allow us to construct groups as (semi-)direct products

of smaller groups. It is more difficult to recognize that a given group G is “built

up” from smaller groups in this way. The problem comes down to finding a normal

subgroup N ◁ G and a “complement” H ∼= G/N in G to which Theorem 8.13 applies.

A technique that can be used for this is the so-called splitting of exact sequences. This

technique,34 which is primarily a matter of efficient language use, will also prove helpful

in the context of modules and vector spaces.

This section focuses mainly on the simpler case of abelian groups. For finitely

generated abelian groups, we will prove a complete structure theorem, 9.11. For non-

abelian groups, finding normal subgroups is a more complex problem we will deal with

in §10.

▶ Exact Sequences

Given group homomorphisms f : A→ B and g : B → C, we say that the sequence

A
f−→ B

g−→ C

is exact (at B) if we have im f = ker g: the image of f is the kernel of g. Longer

sequences of groups and homomorphisms such as

A1
f1−→ A2

f2−→ A3
f3−→ A4

f4−→ A5

are called exact if we have im fi = ker fi+1 for i = 1, 2, 3. If A = 1 is the trivial group,

then the exactness of the sequence 1 −→ B
g−→ C simply means that ker g consists

of only the unit element. By 4.4, g is then injective. Likewise, the exactness of the

sequence A
f−→ B −→ 1 means that the homomorphism is f surjective. Note that we

do not need to specify the homomorphisms to and from the trivial group—there is no

choice. A short exact sequence is an exact sequence of the form

(9.1) 1 −→ A
f−→ B

g−→ C −→ 1.

If the maps f and g are clear from the context, they are often not denoted in the

sequence. By the isomorphism theorem 4.10, the homomorphism g in (9.1) induces an

isomorphism B/f [A] ∼= C. The group B is also called an extension of C by A. The

injection f is often viewed as an inclusion that makes A into a subgroup of B, in which

case the notation B/A ∼= C is often used for short. Note that B is finite if and only if

A and C are and that in that case, we have #B = #A ·#C.
Instead of groups and group homomorphisms, we can also consider the above for

vector spaces and linear maps. The zero space, denoted by 0 for short, then plays the

role of the trivial group. Much from this section is strongly reminiscent of what we

have in linear algebra. That is not so surprising because we will see in §16 that vector

spaces and abelian groups are special examples of modules over a ring.

If G is a group and N ◁ G is normal, then the quotient map π : G → G/N fits

into a short exact sequence
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1 −→ N −→ G
π−→ G/N −→ 1.

Let us try to express the structure of G in that of the smaller groups N and G/N . For

suitable choices of N , we can sometimes obtain an isomorphism G ∼= N ×G/N , which

“splits” G into two smaller groups.

The general problem we are confronted with is, given a short exact sequence as

in (9.1), determining the structure of B from those of A and C. This is not always

possible. For example, if G has a normal subgroup N of order 2 for which G/N is

isomorphic to the Klein four-group V4 ∼= C2×C2, then G is a group of order 8 that fits

into a short exact sequence

1 −→ C2 −→ G −→ V4 −→ 1.

Even if we know that G is abelian, this does not fix the isomorphism class of G: both

C2 × V4 = C2 × C2 × C2 and C4 × C2 fit into such a sequence. So there exist “truly

different” extensions of V4 by C2.

Exercise 1. Show that the dihedral group D4 and the quaternion group Q also fit into this sequence.

▶ Splitting Exact Sequences

All groups in the remainder of this section will be abelian. To better highlight the

analogies with linear algebra, we will write these groups additively as much as possible.

So we write kx for the sum of k ∈ Z elements x (for k < 0, we take |k| elements −x)
and denote the trivial group by 0. In this additive context, we usually write A ⊕ C
instead of A×C. The direct sum A⊕C of two abelian groups A and C fits naturally

into a short exact sequence

0 −→ A
εA−→ A⊕ C πC−→ C −→ 0.

Here εA is the embedding a 7→ (a, 0) into the first coordinate, and πC is the projection

(a, c) 7→ c onto the second coordinate. We can now use the terminology of commutative

diagrams introduced in §8 to say when the sequence (9.1) is “in fact” the simple

sequence above.

9.2. Definition. A short exact sequence 0→ A
f−→ B

g−→ C → 0 of abelian groups

splits (or is split) if there exists a homomorphism ϕ : B → A⊕C such that the diagram

of groups and homomorphisms

0 A B C 0

0 A A⊕ C C 0

f

idA

g

ϕ idC

εA πC

commutes.
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In 9.2, we do not require that ϕ is an isomorphism because this is automatically the

case. After all, for b ∈ kerϕ, we have g(b) = πC(ϕ(b)) = 0, so by the exactness,

we have b = f(a) with a ∈ A. It follows from (0, 0) = ϕ(b) = ϕ(f(a)) = (a, 0)

that a = 0, so b = 0, and ϕ is injective. The image of ϕ contains the subgroup

(ϕ ◦ f)[A] = εA[A] = A ⊕ 0. Moreover, by the surjectivity of g = πC ◦ ϕ, for every

c ∈ C, there is an element (a, c) ∈ im(ϕ). Consequently, we have im(ϕ) = A⊕ C, so ϕ
is an isomorphism.

Arguments of the type above fall into the category of “diagram chasing.” They

are common in commutative algebra. See also Exercise 9.9.5.

The fundamental question is now how to see whether an exact sequence splits.

9.3. Theorem. For a short exact sequence 0 → A
f−→ B

g−→ C → 0 of abelian

groups, the following statements are equivalent:

1. There exists a homomorphism p : B → A such that p ◦ f = idA.

2. There exists a homomorphism s : C → B such that g ◦ s = idC .

3. The exact sequence splits.

The homomorphisms p and s, which as a rule are not unique, are also called a retraction

of the injection f and a section of the surjection g. They “split” the extension B of C

by A.

Proof of 9.3. Let ϕ : B
∼−→ A⊕C be a splitting of the extension. Then the composi-

tion with the projection onto the first coordinate gives a homomorphism p : B → A for

which p ◦ f is the identity on A. Likewise, the composition of the natural embedding

C → A ⊕ C with ϕ−1 gives a section C → B of g. This show that (1) and (2) are

implied by (3).

Given a retraction p of f as in (1), we define a homomorphism ϕ : B → A⊕C by

setting ϕ(b) = (p(b), g(b)). Then B and ϕ fit into the commutative diagram in 9.2, so

ϕ is an isomorphism, and the sequence splits.

Finally, let a section s of g as in (2) be given. For b ∈ B, b and (s ◦ g)(b) have the
same image under g, so we have b− (s ◦ g)(b) ∈ ker g = im f . The map p : B → A that

sends b ∈ B to the element a ∈ A with f(a) = b− (s ◦ g)(b) is now a homomorphism.

For b ∈ im f , we have (s◦g)(b) = s(0) = 0, so we have p(f(a)) = a, and p is a retraction

of f as in (1). As above, it follows that the sequence splits.

Exercise 2. Show that the map (a, c) 7→ f(a) + s(c) gives an isomorphism A ⊕ C ∼−→ B for every

section s of g.

In the typical case where C is cyclic, 9.3 gives the following result.

9.4. Lemma. Let C be a cyclic group with generator c. Then the exact sequence of

abelian groups

0 −→ A
f−→ B

g−→ C −→ 0

splits if and only if one of the following conditions is satisfied:

1. The generator c has infinite order.
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2. The generator c has finite order n, and the fiber g−1(c) over c contains an element

of order n.

Proof. By 9.3, the sequence splits if and only if there exists a section s : C = ⟨c⟩ → B

of g. Such a section is fixed by the choice of an element b = s(c) ∈ B, and the question

is whether a suitable b exists.

If c has finite order n, not every element b in the fiber g−1(c) above c gives a section

s with s(c) = b. After all, for such a section, we have nb = s(nc) = s(0) = 0 ∈ B, so

the order of b divides n. Since the orders of the elements in the fiber over c are always

multiples of the order of c itself (Exercise 4.16), a section can only exist if there exists

an element b ∈ g−1(c) of order exactly n. For such an element b of order n, we indeed

obtain a section by setting s(kc) = kb. Conclusion: the sequence splits if and only if

g−1(c) contains an element of order n.

For c of infinite order, we have C ∼= Z, and the constraint mentioned above

disappears: every element b ∈ g−1(c) ⊂ B gives a section s of g with s(c) = b, and the

sequence splits.

Exercise 3. Show that every short exact sequence of abelian groups 0→ A→ B → Zn → 0 splits.

We can easily generalize 9.4 to the case where C is a direct sum of cyclic groups. The

sequence splits if and only if we can “lift” each of the generators of these cyclic parts

to an element of the corresponding fiber with the same order. Generators of infinite

order can always be lifted as in the previous exercise; for generators of finite order,

the problem may arise that the orders of all elements of the fiber are too large. The

sequence then does not split.

9.5. Example. The natural homomorphism g : Z/6Z→ Z/3Z given by g(x mod 6) =

x mod 3 is surjective with kernel {0 mod 6, 3 mod 6} ∼= Z/2Z of order 2. To obtain

a section s : Z/3Z → Z/6Z of g, we must designate an image s(1 mod 3) ∈ Z/6Z.

The elements of the fiber g−1(1 mod 3) = {1 mod 6, 4 mod 6} have order, respectively,
6 and 3. So only 4 mod 6 qualifies as the image of 1 mod 3, and the corresponding

section s : Z/3Z → Z/6Z given by s(x mod 3) = 4x mod 6 gives a splitting of the

exact sequence

0→ Z/2Z −→ Z/6Z
g−→ Z/3Z→ 0.

The resulting isomorphism Z/6Z ∼= Z/2Z⊕ Z/3Z is a special case of 6.15.

In the analogous situation with g : Z/8Z→ Z/4Z given by g(x mod 8) = x mod 4,

the fiber g−1(1 mod 4) = {1 mod 8, 5 mod 8} above 1 mod 4 contains two elements of

order 8, so no element of the desired order 4. In this case, g has no section, and since

ker(g) = {0 mod 8, 4 mod 8} ∼= Z/2Z, we obtain a sequence

0→ Z/2Z −→ Z/8Z
g−→ Z/4Z→ 0

that does not split. The group Z/2Z⊕ Z/4Z is indeed not cyclic of order 8.

9.6. Lemma. A short exact sequence 0 → A
f−→ B

g−→ C → 0 of finite abelian

groups splits if the orders of A and C are relatively prime.
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Proof. By 6.4 and the assumption, a multiple m of #A exists for which we have

m ≡ 1 mod #C. Take c ∈ C, and choose an arbitrary element b ∈ g−1(c) in the fiber

of g over c. We claim that mb is also an element in the fiber over c and that it is

independent of the choice of the element b ∈ g−1(c). For the first statement, we note

that we have g(mb) − g(b) = (m − 1)g(b) = (m − 1)c = 0 because m − 1 is divisible

by the order of C. For the second, we choose two elements b, b′ ∈ g−1(c). Then we

have b − b′ ∈ ker(g) = f [A], and since the m-tuple of any element in f [A] is the zero

element, we have m(b− b′) = 0 and, therefore, mb = mb′.

Now that we know that the m-tuple mb of an arbitrary element b ∈ g−1(c) gives

a unique element in g−1(c), it follows immediately that the map s : C → B given by

s(c) = mb is a homomorphism. After all, for b1 and b2 in the fibers over, respectively, c1
and c2, the sum b1+b2 is in the fiber over c1+c2. This gives s(c1)+s(c2) = mb1+mb2 =

m(b1 + b2) = s(c1 + c2).

We conclude that s is a section of g, and by 9.3, the sequence splits.

▶ Free Abelian Groups

As in 2.8, we say that a subset S of an abelian group A generates the group A if every

element x ∈ A can be written as a sum x =
∑

s∈S css with numbers cs ∈ Z that are

different from 0 for only finitely many s. Such a representation is generally not unique.

If all x ∈ A can be written uniquely as such a sum, then A is called a free abelian group

and S a basis of A. In such a case, the uniqueness of the representation of x = 0 means

that the elements of a basis S are linearly independent; that is, we have
∑

s∈S css = 0

if and only if cs = 0 holds for all s ∈ S. The cardinality of a basis of A is called the

free rank or rank, for short, of A. It can be infinite. For S = ∅, A = 0 is the trivial

group of rank 0.

Exercise 4. Show that the set P of primes forms a basis of the multiplicative group Q>0 of positive

rational numbers.

For a free abelian group A with finite basis S = {s1, s2, . . . , sn} of cardinality n, the
map

Zn −→ A

(ci)
n
i=1 7−→

∑n
i=1 cisi

is an isomorphism. The induced isomorphism A/2A ∼= (Z/2Z)n shows that A/2A has

order 2n, and we conclude that the rank of A apparently does not depend on the choice

of a basis of A.

The given definitions strongly resemble similar ones from linear algebra. For

example, the rank of an abelian group is the analog of the dimension of a vector space.

The important difference is that here, the “scalars” lie in the ring Z and not in a field.

The theory of abelian groups, which can be referred to as “linear algebra over Z,”

therefore differs somewhat from “classic” linear algebra. For example, our argument

for the rank’s independence of the choice of a basis does not work for the dimension of

vector spaces. Moreover, not every abelian group has a basis.

Exercise 5. Show that a free abelian group contains no elements x ̸= 0 of finite order.
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An abelian group A is called finitely generated if there exists a finite subset S ⊂ A that

generates A. If S = {s1, s2, . . . , sn} is such a subset, then the map Zn → A given above

is surjective but not necessarily injective. By the isomorphism theorem 4.10, there is

an isomorphism A ∼= Zn/H for some H ⊂ Zn. So the finitely generated abelian groups

are all of the form Zn/H for some n ≥ 0 and H ⊂ Zn. Note that every quotient of a

finitely generated abelian group is again finitely generated.

All proofs of the structure theorem 9.11 for finite abelian groups in some way

use the explicit knowledge of the subgroups of Zn. A rather direct proof is given

in Exercises 9.42–43. We follow a slightly different path giving us some interesting

intermediary results.

9.7. Theorem. Every subgroup A ⊂ Zn is free of rank k ≤ n.

Proof. We apply induction on n. For n = 0, the group A = 0 = Z0 is free of rank 0.

Suppose that the theorem is proved for subgroups of Zn−1, and consider the projection

π : Zn → Z onto the last coordinate. This gives a short exact sequence

0 −→ A ∩ kerπ −→ A
π−→ π[A] −→ 0.

By the induction hypothesis, the subgroup A′ = A ∩ kerπ of ker π ∼= Zn−1 is free of

rank k′ ≤ n− 1. We now have two cases. In the case π[A] = 0, it follows immediately

that A = A′ is free of rank ≤ n − 1. In the other case, π[A] is a non-trivial subgroup

of Z, so as in 6.2, it is of the form π[A] = mZ ∼= Z. By 9.4, the extension A of π[A] ∼= Z

by A′ is split; it follows that A ∼= A′ ⊕ Z is free of rank k′ + 1 ≤ n.

9.8. Example. We use the method of 9.7 to determine a basis of the subgroup A ⊂ Z3

given by

A = {(x, y, z) ∈ Z3 : 4x+ y + 3z ≡ 0 mod 6}.

For the projection π : A→ Z onto the z-coordinate, we have π(a) = 1 for the element

a = (1,−1, 1) ∈ A. This gives A = A′ ⊕ ⟨a⟩ with A′ = {(x, y, 0) ∈ Z3 : 4x + y ≡
0 mod 6}. We can view A′ as a subgroup of Z2. The projection π′ : A′ → Z onto

the y-coordinate is not surjective: y must clearly be even. We have π′[A′] = 2Z

because π′(a′) = 2 holds for a′ = (1, 2, 0) ∈ A′. Consequently, A′ = kerπ′ ⊕ ⟨a′⟩, and
kerπ′ = {(x, 0, 0) ∈ Z3 : 4x ≡ 0 mod 6} is generated by (3, 0, 0). We see that A is free

of rank 3, and if we write the elements of Z3 as column vectors, we have

A = Z ·

3

0

0

⊕ Z ·

1

2

0

⊕ Z ·

 1

−1
1

 .

The resulting “upper triangular form” of the basis with respect to the standard basis

of Z3 makes it easy to express an element of A in this basis.

Exercise 6. Determine the index of A in Z3 in the example above.

9.9. Corollary. Let A be a finitely generated abelian group in which every element

a ̸= 0 has infinite order. Then A is free of finite rank.
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Proof. Let S ⊂ A be a finite set of generators and S ′ ⊂ S be a subset of linearly

independent elements that is the largest possible. Then the subgroup F ⊂ A generated

by S ′ is a free abelian group with basis S ′. The maximality of S ′ implies that for every

element s ∈ S \ S ′, there exists a positive number ms ∈ Z with mss ∈ F . Let m ≥ 1

be a common multiple of the numbers ms for s ∈ S \S ′. Then multiplication by m is a

homomorphism A→ A whose image lies in F . By the assumption, this homomorphism

is injective. It follows that A ∼= mA ⊂ F is isomorphic to a subgroup of a free group

of finite rank. By 9.7, A is then also free of finite rank.

Using a variant of the proof of 9.9, we can prove that discrete subgroups of Rn are

always free of finite rank. A subgroup A ⊂ Rn is called discrete if every bounded

subset of Rn contains only finitely many elements of A. Such subgroups are also called

lattices in Rn.

9.10. Theorem. A discrete subgroup A ⊂ Rn is free of rank k ≤ n.

Proof. From linear algebra, we know that a maximal subset S ⊂ A of elements linearly

independent over R cannot contain more than n elements. Let S = {s1, s2, . . . , sk} be
such a subset, with k ≤ n. Then every element x ∈ A can be written as x =

∑k
i=1 risi

with ri ∈ R. Let us prove that the free subgroup A0 ⊂ A generated by S has finite

index in A.

Every real number is the sum of an integer and an element λ ∈ [0, 1), so every

element of A can be written as the sum of an element of A0 and an element of the set

F = {
∑k

i=1 risi : 0 ≤ ri < 1}.

Since F is a bounded set in Rn, it contains only finitely many elements of A, so there

are only finitely many cosets of A0 in A. The index m = [A : A0] is therefore finite.

Multiplication by m is now a homomorphism that sends A injectively to the free group

A0 of rank k. It follows, again from 9.7, that A itself is free of finite rank, and this

rank is at most k ≤ n.

Exercise 7. Show that Z[
√
2] = {a+ b

√
2 : a, b ∈ Z} is a subgroup of R that is free of rank 2.

▶ Structure Theorem

We introduce some terminology to formulate the structure theorem for finitely gener-

ated abelian groups.

An abelian group A in which every element a ̸= 0 has infinite order is called

torsion-free. An element of A of finite order is called a torsion element of A. If we

have ma = 0 ∈ A for m ∈ Z, then a is annihilated by m. We say that a number m ∈ Z

annihilates the group A if we have ma = 0 for all a ∈ A. The torsion elements of A

form the torsion subgroup Ator ⊂ A, and A is torsion-free if we have Ator = 0. More

generally, the quotient A/Ator is always torsion-free. After all, an element a ∈ A for

which ma is a torsion element for some m > 0 is itself also torsion.

Exercise 8. Show that the elements of finite order in a non-abelian group do not, in general, form a

subgroup.
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An abelian group A is called a torsion group if we have Ator = A. Finite abelian groups

are always torsion. The additive group Q/Z is an example of an infinite torsion group.

A finitely generated torsion group is finite. After all, a surjection Zn → A that

maps the “standard basis” of Zn onto elements annihilated by m leads to a surjective

map (Z/mZ)n ↠ A from a finite group to A.

9.11. Theorem. Every finitely generated abelian group A is a direct sum of cyclic

groups. There exist an r ≥ 0 and an isomorphism

A ∼= Ator ⊕ Zr.

The torsion subgroup Ator of A is finite and isomorphic to the direct sum of its Sylow

p-subgroups A(p). For every prime p, there is an isomorphism

A(p)
∼−→ Z/pk1Z⊕ Z/pk2Z⊕ . . .⊕ Z/pkmZ,

where the integers m ≥ 0 and k1 ≥ k2 ≥ . . . ≥ km > 0 are uniquely determined by p.

The number r in 9.11, which is 0 exactly when A is finite, is called the free rank of A.

Proof. Consider the exact sequence 0→ Ator → A→ A/Ator → 0. The group A/Ator

is torsion-free, and as a quotient of A, it is finitely generated, so by 9.9, it is isomorphic

to Zr for some r ≥ 0. After 9.4 (in Exercise 3), we already saw that such an exact

sequence splits, and we obtain an isomorphism A ∼= Ator⊕Zr. As a quotient of A, the

group Ator ∼= A/Zr is finitely generated. Since it is also torsion, it is finite. By 8.10,

Ator is now isomorphic to the sum of its Sylow p-subgroups A(p).

To prove the structure theorem for the Sylow p-subgroups A(p), which are finite

abelian p-groups, we use induction on the order of A(p). For A(p) of order 1 or p, there

is nothing to prove.

Now, suppose that every abelian p-group of order less than #A(p) is a sum of

cyclic p-groups, and choose an element x ∈ A(p) that has maximal order pk1 in A(p).

Every element of A(p) then has order pk with k ≤ k1. We consider the exact sequence

0 −→ ⟨x⟩ −→ A(p)
g−→ A(p)/⟨x⟩ −→ 0.

By the induction hypothesis, we have A(p)/⟨x⟩ ∼= Z/pk2Z⊕Z/pk3Z⊕ . . .⊕Z/pkmZ for

integers ki ≤ k1, and it suffices to show that the sequence splits. We want to construct

a section s of g; this means that for every one of the generators y2, y3, . . . , ym of the

cyclic components of A(p)/⟨x⟩, we must specify an element s(yi) ∈ g−1(yi) of order p
ki .

First take an arbitrary element xi ∈ g−1(yi). Let us show that, once we subtract

a suitable multiple of x, this element has order pki . Since pkixi is an element of ker g =

⟨x⟩, there exists a number ni with pkixi = nix. Since A(p) is annihilated by pk1 , we

have

(pk1−kini)x = pk1xi = 0.

It follows that pk1 is a divisor of pk1−kini, in other words, that ni is divisible by p
ki . If we

write ni = pkiui, then we have pki(xi−uix) = 0, and we conclude that xi−uix ∈ g−1(yi)
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has the desired order pki . This show that there exists a section and that our sequence

splits.

The uniqueness of m and of the exponent ki also follows by induction on the order

of A(p). For A(p) = 1, we have m = 0, and there is nothing to prove. For A(p) ̸= 1,

given a set of exponents ki for A, we can deduce a set of exponents for the subgroup

pA(p) ⊊ A(p) by replacing ki with ki − 1 and leaving it out if we have ki − 1 = 0.

By the induction hypothesis, the exponents of pA(p) are uniquely determined, so the

exponents ki ≥ 2 of A(p) also are. To obtain the uniqueness of all ki, it now suffices to

observe that the number of exponents m of A(p) is uniquely determined by A. After

all, the given representation leads to an isomorphism A(p)/pA(p) ∼= (Z/pZ)m, and the

order pm of Ator/pAtor only depends on A.

9.12. Corollary. Every finite abelian group A has a unique representation

A ∼= Z/d1Z⊕ Z/d2Z⊕ . . .⊕ Z/dtZ,

with numbers di ≥ 2 that satisfy the divisibility relations dt | dt−1 | . . . | d2 | d1.

Proof. For every p that divides the order of A, write the Sylow p-subgroup A(p) as

a direct sum of cyclic p-groups with orders pk1,p ≥ pk2,p ≥ . . . ≥ pkm,p as in 9.11. By

taking ki,p = 0 where necessary, we may assume that for every prime p, the number of

exponents m is equal to a fixed number t and that there is a prime p with kt,p ̸= 0.

Now take di =
∏

p p
ki,p for i = 1, 2, . . . , t. Then we have Z/diZ ∼=

∏
p Z/p

ki,pZ by 6.16.

The product over the i gives∏t
i=1 Z/diZ

∼=
∏

p

∏t
i=1 Z/p

ki,pZ ∼=
∏

pA(p)
∼= A.

We leave the proof of the uniqueness of the di to the reader as an exercise.

9.13. Corollary. An abelian group of square-free order is cyclic.

The numbers di in 9.12 are called the elementary divisors of A. The greatest elementary

divisor d1 of A ̸= 1 is the maximal order of an element of A and is called the exponent

of A; it is the smallest positive number that annihilates A. The trivial group has

exponent 1. The exponent of A divides the order of A and is equal to #A exactly

when A is cyclic. If the exponent of A is a prime p, then A is a direct sum of cyclic

groups of order p and A is called an elementary abelian p-group.

The number t in 9.12 is the minimal number of elements needed to generate A.

After all, for every prime divisor p | dt, the quotient A/pA ∼= (Z/pZ)t is a vector space

of dimension t over Fp = Z/pZ, and this cannot be generated by fewer than t elements.

If for a prime p, we define the p-rank of a finite abelian group A as the dimension of

the vector space A/pA over the field Z/pZ, then t is the maximum over all primes p

of the p-rank of A.

Exercise 9. Show that A is cyclic if and only if all its Sylow p-subgroups are.
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▶ The Group (Z/nZ)∗

A common finite abelian group is the group (Z/nZ)∗ of invertible residue classes modulo

n from 6.11. By restricting the ring isomorphism 6.16 to the group of units of Z/nZ,

we obtain a group isomorphism

(Z/nZ)∗
∼−→

∏
p(Z/p

ordp(n)Z)∗.

To write (Z/nZ)∗ as a sum (or product) of cyclic groups, it suffices to do so for every

group (Z/pkZ)∗ with p prime and k ≥ 1. For k = 1, we know from 7.7 that (Z/pZ)∗ is

cyclic.

9.14. Lemma. Let p be an odd prime and k ≥ 2 be an integer. Then we have the

following:

1. The order of 1 + p ∈ (Z/pkZ)∗ is pk−1.

2. The order of 5 ∈ (Z/2kZ)∗ is 2k−2.

Proof. We use induction on s to prove the equality

ordp[(1 + p)p
s − 1] = s+ 1

for p odd and s ≥ 0. For s = 0, the equality is correct. Suppose that it is correct for

s = n− 1 ≥ 0, and write (1+ p)p
n−1

= 1+upn with p ∤ u. Then for s = n ≥ 1, we have

(1 + p)p
n
= (1 + upn)p = 1 + p · upn + (

∑p−1
i=2

(
p
i

)
uipin) + upppn

by Newton’s binomial theorem. The binomial coefficients in the indexed sum are

divisible by p, so all terms of this sum contain at least 2n + 1 ≥ n + 2 factors p.

Moreover, the last term ppn contains pn ≥ n+2 factors p—here we use the assumption

p ̸= 2. We conclude that (1 + p)p
n − 1 is congruent to upn+1 mod pn+2; this gives the

desired equality for s = n. The proved equality shows that for odd p, the pk−1-th power

of 1 + p in (Z/pkZ)∗ is the unit element, whereas the pk−2-th power is not. The order

of 1 + p is then equal to pk−1, as stated in (1).

The proof of (2) is analogous to that of (1) and is left to the reader. Proving the

equality ord2[5
2s − 1] = s+ 2 for s ≥ 0 concludes the proof.

9.15. Theorem. Let p be an odd prime and k > 0 be an integer.

1. The group (Z/pkZ)∗ is cyclic of order pk−1(p− 1).

2. The group (Z/2kZ)∗ is cyclic of order 2k−1 for k ≤ 2, and for k ≥ 3, we have

(Z/2kZ)∗ = ⟨5⟩ × ⟨−1⟩ ∼= Z/2k−2Z⊕ Z/2Z.

Proof. The canonical map (Z/pkZ)∗ → (Z/pZ)∗ is surjective, and the kernel is a

subgroup of (Z/pkZ)∗ of order pk−1 that contains 1 + p. It follows from 9.14 that for

odd p, 1 + p generates the kernel, which gives a natural exact sequence

1 −→ ⟨1 + p⟩ −→ (Z/pkZ)∗ −→ (Z/pZ)∗ −→ 1.
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The group (Z/pZ)∗ is cyclic of order p−1 by 7.7, and since p−1 and pk−1 are relatively

prime, the sequence splits by 9.6. As a product of two cyclic groups of relatively prime

orders, (Z/pkZ)∗ is also cyclic by 6.15. This proves (1).

It is clear that (Z/2kZ)∗ is cyclic for k ≤ 2. For k ≥ 3, we can imitate the proof

of (1), but in this explicit case, we can also apply 8.8 to the subgroups H1 = ⟨5⟩ and
H2 = ⟨−1⟩. By 9.14.2, H1

∼= Z/2k−2Z is a cyclic subgroup of index 2 in (Z/2kZ)∗. Since

all powers of 5 are congruent to 1 mod 4, we have −1 /∈ H1, and H2
∼= Z/2Z satisfies

H1 ∩ H2 = 1. An application of 8.8 now gives the desired isomorphism (Z/2kZ)∗ =

⟨5⟩ × ⟨−1⟩ ∼= Z/2k−2Z⊕ Z/2Z.
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Exercises.

10. Consider the following commutative diagram of abelian groups whose rows are short

exact sequences:

0 A1 B1 C1 0

0 A2 B2 C2 0.

α β γ

Prove that β is injective (resp. surjective) if α and γ are. Conclude that β is an

isomorphism if α and γ are.

11. Show that every short exact sequence of vector spaces over a field K splits.

12. Determine all isomorphism types of abelian groups of order 16. What types can be

obtained as extensions of C4 by C4? And what types can be obtained as extensions of

V4 by V4?

13. Let f : A → B be an injective homomorphism to an abelian group B and p be a

retraction of f . Prove: B ∼= im f ⊕ ker p. What is the corresponding statement for a

surjective homomorphism g : A→ B with section s?

14. Let C be a finitely generated abelian group with the property that every short exact

sequence 0 → A → B → C → 0 splits. Prove that C is a free group. [Compare with

9.4.]

15. Show that the additive group R of real numbers is torsion-free but not free.

16. Are the abelian groups Q, R, and Q/Z finitely generated? Are they torsion-free?

Answer the same questions for the multiplicative groups Q∗ and R∗.

17. An abelian group A is called divisible if for all a ∈ A and k ∈ Z>0, there exists an

element x ∈ A with kx = a. Prove: a divisible group A ̸= 0 is not free.

18. Prove: a subgroup of a finitely generated abelian group is finitely generated.

*19. Let G ⊂ GL2(Q) be the group generated by ( 2 0
0 1 ) and ( 1 1

0 1 ). Prove that the subgroup

H = {g ∈ G : det(g) = 1} ⊂ G is abelian and not finitely generated.

20. Determine a basis of the group A = {(x, y, z) ∈ Z3 : x + 2y + 3z ≡ 0 mod 6} ⊂ Z3.

Show that the group B ⊂ Z3 generated by v1 = (4,−5, 2), v2 = (−1, 2,−1), and

v3 = (1, 7,−5) is a subgroup of A, and determine the structures of Z3/B and A/B.

21. Answer the same question as above, now with v1 = (4,−5, 8), v2 = (−1, 2,−1), and
v3 = (1, 7,−5).

22. Let A ⊂ Z4 be the kernel of the homomorphism

Z4 −→ Z⊕ Z/4Z⊕ Z/6Z

(w, x, y, z) 7−→ (w + x− 5z, w − y + z mod 4,−w + 3y − z mod 6).

Determine a basis of A and the structure of Z4/A.
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23. Let A be an abelian group of order n andm > 0 be a divisor of n. Prove that A contains

a subgroup Hm of order m. Prove that the subgroup Hm ⊂ A is uniquely determined

by m for all divisors m | n if and only if A is cyclic.

24. Show that an exact sequence R : 0→ A→ B → C → 0 of finite abelian groups leads to

an exact sequence Rp : 0 → A(p) → B(p) → C(p) → 0 of Sylow p-subgroups for every

prime p and that R splits if and only if this is the case for all Rp.

25. Show that every short exact sequence 0 → A → B → C → 0 of abelian groups leads

to an exact sequence 0 → Ator → Btor → Ctor but that the map Btor → Ctor is not

necessarily surjective. Verify that the sequence 0 → A/Ator → B/Btor → C/Ctor → 0

is a short exact sequence if and only if Btor → Ctor is surjective.

26. For a finite abelian group A and a prime power pk, define the pk-rank of A as the

number of cyclic groups of order divisible by pk in a decomposition of A as a product of

cyclic groups. Show that this rank does not depend on the chosen decomposition and

that for k = 1, it gives the p-rank defined in the text. Is this also true if we replace pk

with an arbitrary positive number?

27. Show that finite abelian groups that contain the same numbers of elements of order k

for every k ≥ 1 are isomorphic. [This is not true in general for finite groups; see Exercise

6.45.]

28. Suppose that A and B are finitely generated abelian groups and that for every k ≥ 1,

the orders of A/kA and B/kB are equal. Are A and B necessarily isomorphic?

29. Let A be a finitely generated abelian group with subgroup H, and suppose that for

every prime p, the canonical map H → A/pA is surjective. Prove: H = A. Show that

this is not true for arbitrary abelian groups A.

30. Show that a finite abelian group is cyclic if and only if there is no prime p for which it

contains a subgroup isomorphic to Z/pZ⊕ Z/pZ and that a finitely generated abelian

group A is cyclic if and only if A/pA is cyclic for all primes p.

31. Show that the number of isomorphism classes of abelian groups of order qm for q

prime is equal to p(m), where p is the partition function. Deduce that the number of

isomorphism classes of abelian groups of order n =
∏
q q

kq is equal to
∏
q p(kq).

32. Let S ⊂ R be a finite set with 1 ∈ S and H ⊂ R be the additive subgroup generated

by S. Prove: H is discrete in R ⇐⇒ S ⊂ Q.

33. Let p be an odd prime, and suppose that x− 1 has exactly k ≥ 1 factors p. Prove that

xp
s − 1 has exactly k + s factors p. Show that for k ≥ 2, this is also true for p = 2.

34. Let 0 → A → B → C → 0 be a short exact sequence of finitely generated abelian

groups. Show that we have the equality r(A) + r(C) = r(B) for the free ranks of these

groups. Also show that if B is finite and p is prime, the inequality

rp(A) + rp(C) ≥ rp(B)

holds for the p-ranks. Give an example where this inequality is strict.

35. Determine the elementary divisors of (Z/nZ)∗ for n = 720, 1000, and 17000.

36. Determine the zeros of the polynomial X2 − 1 in Z/nZ for n = 720, 1000, and 17000.
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37. Let p be a prime and k ≥ 1 be an integer. Show that the canonical map (Z/pkZ)∗ →
(Z/pZ)∗ has a section given by a mod p 7→ ap

k−1
mod pk. [Note that it is unclear a

priori that this map is well defined !]

*38. Let A be a finitely generated abelian group and f : A → A be a surjective homomor-

phism. Prove that f is an isomorphism. Does a similar statement hold for injective

homomorphisms?

39. Let F be a free abelian group of finite rank and π : F → Z be a surjective homomor-

phism. Prove that F has a basis in which π is the projection onto the last coordinate.

40. Let F be a free abelian group of finite rank and H ̸= 0 be a subgroup. Let π : F → Z

be a surjective homomorphism with π[H] ̸= 0 for which the index a = [Z : π[H]] > 0

is minimal. Prove: there exist a splitting F = F ′ ⊕ ⟨x⟩ and a subgroup H ′ ⊂ aF ′ with

H = H ′ ⊕ ⟨ax⟩.

41. Let F be a free abelian group of rank n and H be a subgroup. Prove that there exist a

basis x1, x2, . . . , xn of F and integers di such that d1x1, d2x2, . . . , dnxn is a basis of H

and d1 | d2 | d3 | . . . | dn. Deduce Corollary 9.12 from this.

42. Let M be an n × n matrix with integer coefficients. Prove that there exist matrices

A,B ∈ SLn(Z) for which AMB is a diagonal matrix. [Hint: use the previous exercise.]

43. Let A ⊂ Zn be the subgroup generated by the columns of the matrix M = (cij)
n
i,j=1.

Prove that A has finite index in Zn exactly when M is non-singular and that in that

case, the index [Zn : A] is equal to |det(M)|.

44. Determine the structure of Z3/A if A is generated by the columns of the matrix

M =

2 3 0

0 4 5

0 0 6

 .

45. Let S be a (not necessarily finite) set. An abelian group F ⊃ S is called the free abelian

group on the set S if every (set-theoretic) map S → X to an abelian group X has a

unique extension to a homomorphism F → X. Show that F exists and is uniquely

determined up to isomorphisms.

46. Consider a (not necessarily finite) collection of abelian groups Ai (i ∈ I). An abelian

group D endowed with homomorphisms fi : Ai → D for all i ∈ I is called the direct sum

of the groups Ai, denoted by D = ⊕i∈IAi, if for every collection of homomorphisms

gi : Ai → X to an abelian group X, there exists a unique homomorphism g : D → X

with g ◦ fi = gi for all i ∈ I. Show that D exists and is uniquely determined up to

isomorphisms. What is the relation to the previous exercise?

47. For A = Q∗ and p prime, define the subgroup Ap ⊂ A by Ap = {pk : k ∈ Z}. Prove

that A is the direct sum of Ator = ⟨−1⟩ and the subgroups Ap for the primes p.

48. Consider a (not necessarily finite) collection of abelian groups Ai (i ∈ I). An abelian

group P endowed with homomorphisms fi : P → Ai for all i ∈ I is called the direct

product of the groups Ai, denoted by P =
∏
i∈I Ai, if for every collection of homomor-

phisms gi : X → Ai from an abelian group X, there exists a unique homomorphism

g : X → P with fi ◦ g = gi for all i ∈ I. Show that P exists and is uniquely determined

up to isomorphisms.35
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49. Let I be a set and A be an abelian group. Show that the set AI of maps f : I → A

becomes an abelian group under the “coordinate-wise addition” (f1 + f2)(i) = f1(i) +

f2(i) and that this group is isomorphic to the product group
∏
i∈I A in the sense of the

previous exercise.

50. Show that the direct sum of finitely many abelian groups is isomorphic to the direct

product of these groups but that this is not the case for an infinite collection of (non-

trivial) abelian groups.

51. Given homomorphisms of abelian groups fi : A→ Bi for i = 1, 2, we define the fibered

sum B1⊕AB2 of B1 and B2 over A as (B1⊕B2)/⟨f1(a),−f2(a) : a ∈ A⟩. Likewise, for
homomorphisms of abelian groups gi : Bi → C for i = 1, 2, we define the fibered product

B1 ×C B2 of B1 and B2 over C as {(b1, b2) ∈ B1 × B2 : g1(b1) = g2(b2)}. Show that

these are abelian groups for which the diagrams

A B1

B2 B1 ⊕A B2

f1

f2 id×0

0× id

and

B1 ×C B2 B2

B1 C

π2

π1 g2

g1

commute. *Can you state “universal properties” as in Exercises 45 and 46 that char-

acterize fibered sums and products?

*Homologic algebra. In the following exercises, we consider abelian extensions E of an

abelian group C by an abelian group A. Two extensions 0 → A → E → C → 0 and

0 → A → E′ → C → 0 are called isomorphic if they fit into a commutative diagram of the

form

0 A E C 0

0 A E′ C 0.

idA f idC

We denote the set of isomorphism classes of extensions of C by A by Ext(C,A). If the arrows

are clear, we often say “the extension E ∈ Ext(C,A)” for short. In the exercises below, we

show that the set Ext(C,A) itself has the structure of a group.

52. Give an example of non-isomorphic extensions E,E′ ∈ Ext(C,A) for which E and E′

are isomorphic as abelian groups.

53. For E ∈ Ext(C,A1) and a group homomorphism ϕ : A1 → A2, we define ϕ∗E to be

the fibered sum A2 ⊕A1 E. Show that this leads to a natural map ϕ∗ : Ext(C,A1) →
Ext(C,A2).

54. For E ∈ Ext(C2, A) and a group homomorphism ϕ : C1 → C2, we define ϕ∗E to be the

fibered product E ×A2 C1. Show that this leads to a natural map ϕ∗ : Ext(C2, A) →
Ext(C1, A).
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55. Given two extensions E1, E2 ∈ Ext(C,A), we define the Baer sum E1+E2 ∈ Ext(C,A)

by mapping the sum E1⊕E2 ∈ Ext(C⊕C,A⊕A) (whose definition is clear) to Ext(C,A)

via the maps

Ext(C ⊕ C,A⊕A) ∆∗
−→ Ext(C,A⊕A) ∇∗−→ Ext(C,A).

Here ∆ : C → C ⊕ C is the “diagonal embedding” c 7→ (c, c), and ∇ : A ⊕ A → A is

the “addition” (a, a′) 7→ a+a′. Show that Ext(C,A) becomes an abelian group for this

addition with the split extension 0→ A→ A⊕ C → C → 0 as its unit element.

56. Let p be a prime. Show that Ext(Cp, Cp) has order p.

57. Let p be an odd prime. Prove:

a. If a, b ∈ {2, 3, . . . , p− 1} satisfy ab ≡ 1 mod p, then either the order of (a mod p2)

or the order of (b mod p2) in (Z/p2Z)∗ is divisible by p.

b. There is a primitive root modulo p2 in {2, 3, . . . , p− 1}.
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10 Finite Groups

In the previous section, we saw that finite abelian groups can be “split” into sums of

cyclic groups. In this section, we try to analyze arbitrary finite groups G in a similar

way. For non-abelian groups, we encounter the problem that although we can easily

point out non-trivial subgroups, these are often not normal. The Sylow theorems in

this section can frequently be used to create normal subgroups. If we have a normal

subgroup N ◁G, the situation is often still considerably more complicated than in the

abelian case. For split sequences, we generally get a splitting of G as a semi-direct

product rather than a direct product.

For numbers n with few divisors, we can “unravel” groups of order n as products

of simple groups and construct a list of all isomorphism types of groups of order n. For

highly divisible numbers n, such an explicit classification, the fundamental classification

problem of finite group theory, is impossible.

▶ Non-abelian Exact Sequences

We begin with the non-abelian analog of 9.2.

10.1. Definition. A short exact sequence 1→ N −→ G
g−→ H → 1 of groups is said

to split or be split if there exists a section s : H → G with g ◦ s = idH .

If G is abelian, then N and H also are, and by 9.3, the definition is equivalent to 9.2.

If the sequence in 10.1 splits, we can view H as a subgroup of G through the

injection s. We then have N ∩H = 1 and G = {nh : n ∈ N, h ∈ H}. So Theorem 8.13

applies, and G is the semi-direct product of N and H. Conversely, in a semi-direct

product, the projection πH : N ⋊H → H onto the H-coordinate is a surjection with

kernel N that leads to a short exact sequence as in 10.1. Semi-direct products and

split short exact sequences are therefore “the same” in the following sense.

10.2. Theorem. Let N and H be groups and σ : H → Aut(N) be a homomorphism.

Then the semi-direct product N ⋊σ H fits into a short exact sequence

1→ N −→ N ⋊σ H
πH−→ H → 1

that is split by the natural section h 7→ (1N , h) of πH .

Conversely, in a short exact sequence of groups

1→ N −→ G
g−→ H → 1,

every section s : H → G of g leads to an isomorphism N ⋊σ H
∼−→ G given by

(n, h) 7→ ns(h). Here σ : H → Aut(N) is the conjugation action induced by s:

σ(h)(n) = s(h)ns(h)−1.

The splitting of an exact sequence 1 → N → G → G/N → 1 amounts to finding

a subgroup H ⊂ G with N ∩ H = 1 and G = NH. Such a subgroup H is also

called a complement of N in G. For such a complement, the natural isomorphism
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G/N = NH/N
∼−→ H/(H ∩ N) = H ⊂ G gives an associated section. We already

saw in the abelian case that not every normal subgroup N ◁ G has a complement. A

complement is, moreover, not necessarily unique.

Exercise 1. Show that for a normal subgroup N of a finite group G, a subgroup H ⊂ G with

N ∩H = 1 is a complement of N if and only if H has order [G : N ].

10.3. Example. 1. We saw in 8.14.2 that the subgroup Cn of rotations in the dihedral

group Dn is a normal subgroup of index 2, and to the split exact sequence

1→ Cn −→ Dn
det−→ ⟨−1⟩ → 1

corresponds the semi-direct product Dn = Cn⋊⟨σ⟩ from 8.14.2. Every map s : ⟨−1⟩ →
Dn that sends −1 to a reflection σ ∈ Dn gives a section, and for every choice of σ, −1
acts on Dn by inversion (compare with Exercise 11).

2. For n ≥ 2, the kernel An of the sign map ε : Sn → ⟨−1⟩ is a normal subgroup

of index 2 of the symmetric group Sn. The exact sequence

1→ An −→ Sn
ε−→ ⟨−1⟩ → 1

splits because every homomorphism s : ⟨−1⟩ → Sn that sends −1 to a 2-cycle is a

section of the sign map. More generally, every odd element of order 2 in Sn generates

a complement of An. Here, we also have a semi-direct product Sn ∼= An ⋊ ⟨−1⟩, but
in contrast to the previous example, the action of −1 on An for n not too small now

does depend on the choice of the section s. Apparently, completely different actions of

H on N can lead to isomorphic semi-direct products. See Exercise 14 for an amusing

example of this phenomenon.

3. By 8.3.2, the symmetric group S4 fits into a split exact sequence

1→ V4 −→ S4 −→ S3 → 1

induced by the tetrahedron homomorphism from §5. We see that the extension is split

by viewing S3 as the stabilizer of a point in S4. The resulting action S3 → Aut(V4)

permutes the non-trivial elements of V4 and is an isomorphism.

4. On the group I2(R) of isometries of the plane, the “linear component” homo-

morphism L from 3.9 leads to an exact sequence

1 −→ T −→ I2(R)
L−→ O2(R) −→ 1.

We see that this sequence splits by viewing O2(R) as a subgroup of I2(R) in the usual

way; this gives the semi-direct product we already know from 8.11.

▶ Classification for Simple Group Orders

The classification problem for groups of order n is easy if n = p is prime: the only

group of order p is the cyclic group Cp. For the product n = pq of two primes p ≤ q,

by Cauchy’s theorem 5.13, there is a cyclic subgroup Cq ⊂ G of order q and index p.

By 5.10, Cq is normal in G, so we have an exact sequence

1→ Cq −→ G −→ Cp −→ 1.
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For p ̸= q, this sequence splits. After all, by 5.13, G then contains a subgroup of order p

that is mapped isomorphically onto Cp; the inverse of this isomorphism gives a section.

For p = q, the sequence does not split in the case where G contains elements of order

p2 and therefore is cyclic. In the case of a split sequence, we find G = Cq ⋊ϕ Cp for a

map

ϕ : Cp −→ Aut(Cq) ∼= (Z/qZ)∗ ∼= Cq−1.

Here, we use the isomorphisms from 8.15 and 7.7. If p does not divide q − 1, then ϕ is

trivial, and we have G = Cp×Cq, which is an abelian group that is cyclic for q ̸= p by

the Chinese remainder theorem 6.15. If p divides q−1, then Aut(Cq) contains a unique

cyclic subgroup of order p, and a non-trivial action ϕ identifies Cp with this subgroup.

This completes the proof of the following result.

10.4. Theorem. Let p and q be primes with p < q.

1. Every group of order p2 is abelian and isomorphic to Cp × Cp or Cp2 .
2. For p ∤ q − 1, every group of order pq is cyclic.

3. For p | q − 1, every group of order pq is isomorphic to Cpq or the semi-direct

product Cq ⋊ Cp of Cq and the cyclic subgroup Cp ⊂ Aut(Cq).

For p = 2, the non-abelian group Cq ⋊ C2 is the dihedral group Dq from 10.3.1.

10.5. Theorem. There are exactly five isomorphism classes of groups of order 8. The

abelian groups are C2 × C2 × C2, C4 × C2, and C8; the non-abelian groups are the

dihedral group D4 and the quaternion group Q.

Proof. For G of order 8, the possible orders of the elements of G are 1, 2, 4, and 8.

If G contains an element of order 8, we have G ∼= C8. If a2 = 1 for all a ∈ G, then
G is an elementary abelian 2-group, and we find G ∼= C2 × C2 × C2. From now on,

assume that G contains an element a of order 4 and no element of order 8. The cyclic

subgroup C4 = ⟨a⟩ has index 2 in G and is therefore normal. We obtain an exact

sequence 1→ C4 → G→ C2 → 1.

We first look at the case where this sequence splits. Then there is an element b of

order 2 in G that is not in C4 = ⟨a⟩, and we have G = C4 ⋊ C2, where the non-trivial

element b ∈ C2 acts on C4 by conjugation. Since Aut(C4) ∼= (Z/4Z)∗ consists of the

identity and inversion, this gives us two groups: the abelian direct product C4 × C2

and the non-abelian dihedral group D4.

Finally, assume that the sequence does not split. This means that every element

b in the fiber G \ ⟨a⟩ has order 4. Choose such a b. Then we have b2 ∈ ⟨a⟩, and since

b2 has order 2, we have b2 = a2 = a−2 and a2b2 = 1. The elements a and b do not

commute because, otherwise, ab /∈ ⟨a⟩ would have order 2. Since bab−1 ∈ ⟨a⟩ has order
4, we apparently have bab−1 = a−1. The structure of G = ⟨a, b⟩ is now fixed by the fact

that a and b have order 4 and satisfy the relations b2 = a2 and bab−1 = a−1. In more

traditional notation, we write a = i and b = j and have i2 = j2 = −1. Note that −1
commutes with i and j and therefore with all elements of the group. If we also write

ij = k, we obtain the representation of the quaternion group Q from 8.7.

Exercise 2. Determine the number of subgroups of order 2 and 4 of each of the groups in 10.5.
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▶ Sylow p-Subgroups

So far, Cauchy’s theorem 5.13 has been our main tool for constructing subgroups of an

abstract finite groupG. We now give an important strengthening that was proved in the

1870s by the Norwegian L. Sylow (1832–1918). Among other things, this strengthening

says that for every prime power pi that divides the order of a finite group G, there is

a subgroup H ⊂ G of order pi. Such a subgroup is called a p-subgroup of G.

Exercise 3. Show that the group A4 of order 12 does not have a subgroup of order 6.

For a given prime p, we can write the order of a finite group G as #G = pkm with

p ∤ m. A subgroup H of G is called a Sylow p-subgroup of G if H has order pk. Such

an H is a “maximal p-subgroup” of G and is only non-trivial if p divides the group

order. It does not have to be normal in G. Sylow p-subgroups are made by beginning

with a subgroup of prime order obtained from 5.13 and extending it step by step. For

this, we use the following lemma.

10.6. Lemma. Let H be a p-subgroup of a finite group G. Then we have

[NG(H) : H] ≡ [G : H] mod p.

Proof. LetH act regularly onX = G/H by left multiplication. A coset xH is invariant

under multiplication by H if we have hxH = xH for h ∈ H, that is, hx ∈ xH and

h ∈ xHx−1 for all h ∈ H. This means exactly that xHx−1 = H, so we have x ∈ NG(H)

and XH = NG(H)/H. By 5.14, we have #XH ≡ #X mod p, and since the orders of

XH = NG(H)/H and X = G/H are equal to, respectively, [NG(H) : H] and [G : H],

this is the congruence we wanted to prove.

10.7. Theorem. Let G be a finite group and p be a prime. Then G has a Sylow

p-subgroup. Every p-subgroup of G is contained in a Sylow p-subgroup of G.

Proof. We take p | #G; otherwise, the theorem is trivial. By Cauchy’s theorem, G

then contains a p-subgroup of order p, and it suffices to prove the second statement,

which, after all, implies that such a subgroup of order p is contained in a Sylow p-

subgroup of G.

Let H ⊂ G be an arbitrary p-subgroup. If [G : H] is not divisible by p, then by 4.8,

#H contains the same number of factors p as #G, and H itself is a Sylow p-subgroup

of G. If [G : H] is divisible by p, we will show that there exists a subgroup H ′ ⊃ H

of G that contains H as a subgroup of index p. Then H ′ is a larger p-subgroup of G,

and by repeating the argument as often as necessary, we obtain a Sylow p-subgroup

P ⊃ H.

For the construction of H ′, we note that if [G : H] is divisible by p, then the order

of the group NG(H)/H is also divisible by p by 10.6. Then there exists a subgroup of

NG(H)/H of order p, and according to 8.1, this can be written as H ′/H for a subgroup

H ′ ⊃ H of G. This gives [H ′ : H] = #(H ′/H) = p.

The set of Sylow p-subgroups of G is denoted by Sylp(G). We have the following useful

theorem for the order np of Sylp(G).
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10.8. Sylow’s theorem. Let G be a finite group of order pkm with p ∤ m prime. Then

the number np of Sylow p-subgroups of G is a divisor of m, and we have np ≡ 1 mod p.

All Sylow p-subgroups of G are conjugate in G.

Proof. We first prove that any two Sylow p-subgroups P and P ′ of G are conjugate.

Take the set X of subgroups conjugate to P ′, and let G act on X by conjugation. The

number of subgroups conjugate to P ′, which is equal to #X = [G : NG(P
′)], divides

[G : P ′] = m and therefore is not a p-tuple. If we apply 5.14 for the conjugation action

of P on X, we obtain #XP ≡ #X ̸≡ 0 mod p. In particular, XP is not empty, so there

is at least one subgroup P ′′ conjugate to P ′ that is fixed under conjugation by elements

of P . We claim that P = P ′′, so that P and P ′ are indeed conjugate. To prove this, we

consider the normalizer NG(P
′′) of P ′′. This contains N = P ′′ as a normal subgroup

and H = P as a subgroup. Theorem 8.2 gives us an isomorphism

P/(P ∩ P ′′)
∼−→ PP ′′/P ′′.

On the left, we have a p-group; on the right, a group whose order divides [G : P ′′] = m.

Both groups are therefore trivial, which means that we have P = P ′′.

Now that we know that all Sylow p-subgroups of G are conjugate, we have X =

Sylp(G), and the given argument shows that P ′′ = P is the only fixed point for the

conjugation action of P on X. We therefore have np = #X ≡ #XP = 1 mod p.

10.9. Corollary. A normal p-subgroup N ◁G is contained in every Sylow p-subgroup

of G. For a normal Sylow p-subgroup P ◁ G, we have Sylp(G) = {P}.

Proof. There exists a Sylow p-subgroup P ⊃ N by 10.7. Every other Sylow p-subgroup

is of the form gPg−1 by 10.8 and therefore contains gNg−1 = N . The second statement

follows easily.

10.10. Corollary. Suppose that all Sylow subgroups of G are normal. Then G is

isomorphic to the direct product of its Sylow subgroups.

Proof. Since the Sylow p-subgroups Np◁G for different primes p are normal subgroups

of relatively prime order, we have Np ∩ Np′ = 1 for p ̸= p′. This implies that an

element n ∈ Np always commutes with an element n′ ∈ Np′ . After all, the commutator

[n, n′] = n(n′n−1n′−1) = (nn′n−1)n′−1 is in Np by the first representation and in Np′ by

the second. It follows that [n, n′] = e. The map∏
p|#GNp −→ G

from the product of the Sylow subgroups to G given by multiplying the coordinates

is now a homomorphism that sends every “component” Np ⊂
∏

p|#GNp injectively to

G. The order of the image, which is divisible by #Np for all p | #G, is equal to #G,

so the map is surjective. Since the orders on the two sides are equal, the map is an

isomorphism.

A finite group G with the property that all its Sylow subgroups are normal is called

nilpotent. Note that finite abelian groups are always nilpotent. For non-abelian groups,

nilpotence is a strong requirement.
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10.11. Example. Let us determine the Sylow p-subgroups of S4 and S5. For this, we

use the conjugacy classes determined in 5.11.

For the group S4 of order 24 = 23 · 3, it follows from 10.8 that we have n2 ∈ {1, 3}
and n3 ∈ {1, 4}. Each of the eight 3-cycles in S4 is contained in a Sylow 3-subgroup,

which has order 3 and therefore contains two 3-cycles; consequently, we have n3 = 4.

The 16 elements of S4 that are not 3-cycles each have order 1, 2, or 4 and are contained

in a Sylow 2-subgroup, which has order 8. This implies n2 > 1 and therefore n2 = 3.

To give the Sylow 2-subgroups of S4 explicitly, we note that the subgroup

V4 = {(1), (12)(34), (13)(24), (14)(23)} ◁ S4

is normal in S4, and so by 10.9, it is contained in every Sylow 2-subgroup. If we add

an arbitrary element of order 2 or 4 outside V4, for example (12), we obtain a Sylow

2-subgroup of order 8:

P = ⟨V4, (12)⟩ = V4 ∪ {(12), (34), (1324), (1423)}.

The group P is generated by ρ = (1324) and σ = (12), which satisfy the relation

σρ = ρ−1σ, so we have P ∼= D4. If in the above, we replace (12) with (13) or (14), we

obtain groups P ′ and P ′′ conjugate tot P . We have Syl2(S4) = {P, P ′, P ′′}. Note that

we already came across this in 8.3.2.

For the group S5 of order 120 = 23 · 3 · 5, we obtain n2 ∈ {1, 3, 5, 15}, n3 ∈
{1, 4, 10, 40}, and n5 ∈ {1, 6}. Since there are 24 different 5-cycles in S5, it is imme-

diately clear that we have n5 = 6, with four non-trivial powers of a 5-cycle in each

Sylow 5-subgroup. Likewise, we obtain n3 = 10 from the 20 different 3-cycles in S5.

For the Sylow 2-subgroups, which do not have prime order and therefore are not nec-

essarily pairwise disjoint, we cannot deduce n2 directly from the numbers of elements

of 2-power order. However, since there are 1+10+30+15 = 56 elements of order 1, 2,

or 4 and a Sylow 2-subgroup has order 8, we have n2 > 7, and so n2 = 15. We obtain

these 15 groups by embedding S4 in S5 in one of the five obvious ways and then taking

one of the three Sylow 2-subgroups of S4.

▶ Construction of Normal Subgroups

We can often use the Sylow theorems to make normal subgroups in groups of which we

only know the order. Sometimes, we can prove directly that there is a prime divisor

p | #G with np = 1; other times, we can make normal subgroups by letting G act by

conjugation on suitable sets Sylp(G).

10.12. Example. 1. Let G be a group of order 42 = 2 · 3 · 7. Then n7 ≡ 1 mod 7

divides 6. It follows that n7 = 1, so G has a normal subgroup of order 7.

2. Let G be a group of order 30 = 2 · 3 · 5. Then we have n5 ∈ {1, 6} and

n3 ∈ {1, 10}. If we have n5 = 6, then G has exactly 6 × 4 = 24 elements of order 5,

and we find n3 = 1 “for lack of space.” So G has a normal subgroup of order 3 or 5.

3. Let G be a group of order 300 = 22 ·3·52. Then we have n5 ∈ {1, 6}. In the case

n5 = 1, the group G has a normal subgroup of order 25. In the case n5 = 6, we can let G
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act by conjugation on Syl5(G). This gives a transitive action ϕ : G→ S(Syl5(G))
∼= S6.

The kernel N of this homomorphism is a normal subgroup N ̸= G. If H is the stabilizer

of a subgroup of Syl5(G), then H has index 6 in G by the transitivity of the action.

Since N ⊂ H, the order of N is a divisor of 300/6 = 50. Since #G = 300 = 22 · 3 · 52
does not divide 6! = 720 = 24 · 32 · 5, the order of N is divisible by 5. So G has an N

of order 5, 10, 25, or 50.

Having found a normal subgroup N ◁G, we can try to “construct” G from N and G/N

using 10.2. For this, in addition to N , we need to know Aut(N). This is straightforward

for cyclic N (8.15) and for elementary abelian N (Exercise 43). If the group order n is

a product of only a few primes, it is often possible to give a complete classification of

the isomorphism types of groups of order n in this way.

10.13. Theorem. There are exactly five isomorphism classes of groups of order 12.

The abelian groups are C6 × C2 and C12; the non-abelian groups are the alternating

group on four letters A4, the dihedral group D6, and the semi-direct product C3 ⋊ϕ C4

with respect to the unique surjection ϕ : C4 → Aut(C3).

Proof. Let G be of order 12. Then the number of Sylow 3-subgroups n3(G) is equal to

1 or 4. In the first case, we have G = N3 ⋊H4 for a normal Sylow 3-subgroup N3 ⊂ G

and a Sylow 2-subgroup H4 we can take as its complement. In the second case, there

are eight elements of order 3 in G, and the other four elements form a normal Sylow

2-subgroup N4 ⊂ G. This case gives G = N4 ⋊ C3 for a Sylow 3-subgroup C3.

First assume G = N4 ⋊ C3. If N4 = C4 is cyclic, then Aut(N4) ∼= (Z/4Z)∗ has

order 2 and C3 can only act trivially. In this case, G = C4 × C3
∼= C12 is cyclic. If

N4 = V4 is the Klein four-group, then Aut(V4) ∼= S3 has a unique subgroup of order 3.

In this case, in addition to the direct product G ∼= V4 × C3
∼= C6 × C2, we can also

make the semi-direct product G ∼= V4 ⋊ C3
∼= A4. This is the subgroup of index 2 in

the group S4 = V4 ⋊ S3 from 10.3.3.

Next, assume G = N3 ⋊ϕ H4 for an action ϕ : H4 → Aut(N3) ∼= (Z/3Z)∗. If this

product is direct, we obtain one of the abelian groups from the previous paragraph, so

take ϕ non-trivial. If H4 is cyclic, this determines ϕ uniquely: the generator of H4 = C4

acts by inversion on N3 = C3, and we find the non-abelian group G ∼= C3 ⋊ C4. If

H4 = V4 is the Klein four-group, we can write H4 = ⟨x⟩ × ⟨y⟩ for an element x that

commutes with C3 and an element y that acts on C3 by inversion. Since x is its

own inverse, we can also say that y acts by inversion on C3 × ⟨x⟩ ∼= C6; this gives

G ∼= C6 ⋊ C2 = D6.

Exercise 4. Which group in 10.13 is isomorphic to S3 × C2?

Using the results obtained so far, we know the isomorphism types of all groups of order

n ≤ 15. They are listed in the “table of small groups” given after this section. For the

number of isomorphism types I(n) for order n ≤ 32, we have the following table:

130



Algebra I– §10

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16*

I(n) 1 1 1 2 1 2 1 5 2 1 1 5 1 2 1 14

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32*

I(n) 1 5 1 5 2 2 1 15 2 2 5 4 1 4 1 51

We refer to the exercises for the determination of I(n) for the values 17 ≤ n ≤ 31 that

are not covered by 10.4. The determination of I(n) for the orders marked with a star

is beyond the scope of these course notes.

The list shows that for prime powers pn, the number I(pn) grows rapidly with n.

The values I(2n) were calculated by hand for n ≤ 6; for the recent calculation of values

such as I(27) = I(128) = 2328 and I(28) = I(256) = 56092, computers were used. For

these types of statements, verifying the correctness of a proof is a problem in itself.

In 1997, the value 10 494 213 was found for I(29) = I(512), and I(210) = I(1024) =

49 487 365 422 was calculated at the beginning of this century.36 Currently, the precise

value of I(2048) ≈ 1.77 · 1015 is not know.

▶ Solvable Groups

For arbitrary finite groups, we have no guarantee that the group can be “built step by

step” from smaller groups. However, this approach does work well for so-called solvable

groups.

10.14. Definition. A finite group G is called solvable if there exists a chain of sub-

groups

G = H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hk = 1

of G for which Hi+1 is always normal in Hi and Hi/Hi+1 is cyclic of prime order .

The historical reason for this name is a connection to solving polynomial equations by

extracting roots, which we will encounter later in Galois theory. The solvability chain

in 10.14 is not always unique.

Exercise 5. Show that S3 has a unique solvability chain but C6 does not.

Cauchy’s theorem 5.13 gives rise to cyclic subgroups of prime order. If there are no

problems with normality, for example because the group in question is abelian, this

inductively leads to solvability.

10.15. Proposition. Finite abelian groups are solvable.

Proof. The proof is by induction on the group order. For G = 1, there is nothing to

prove. For non-trivial G, by Cauchy’s theorem, there exists an element x ∈ G of prime

order. The subgroup H = ⟨x⟩ is normal in G because G is abelian, and the quotient

group G/H is solvable by the induction hypothesis. Write the corresponding chain of

subgroups as G/H = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mk = H/H = 1. By 8.1, we have

Mi = Hi/H for subgroups Hi ⊃ H of G, and the quotients Hi/Hi+1
∼= Mi/Mi+1 are

cyclic of prime order. The chain

G = H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hk = H ⊃ 1
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now shows that G is solvable.

Note that 10.15 also follows directly from the structure theorem 9.11. However, the

given proof is interesting because the abelian property of G is only used to guarantee

the normality of the subgroup H = ⟨x⟩.

Exercise 6. Show that A4 has no normal subgroups of prime order.

A normal subgroup of prime order always exists if G is a p-group, that is, a finite group

G whose order is a power of a prime p.

10.16. Lemma. Let G be a finite p-group. Then we have Z(G) ̸= 1.

Proof. We let G act on itself by conjugation. The fixed points under this action are

the elements of the center of G, and congruence 5.14 gives #Z(G) ≡ #G ≡ 0 mod p.

So the order of Z(G) is divisible by p.

For an element x ∈ Z(G), the subgroup H = ⟨x⟩ is conjugation-invariant and therefore

normal in G. For a p-group G, the proof of 10.15 therefore remains valid with as only

modification that for the generator x of H, we take an element of Z(G) of order p.

10.17. Theorem. Every finite p-group is solvable.

For the 2-group D4 = ⟨ρ, σ⟩ of order 8, there are several solvability chains. The

chain D4 ⊃ ⟨ρ⟩ ⊃ Z(D4) = ⟨ρ2⟩ ⊃ 1 consists of normal subgroups of D4; the chain

D4 ⊃ ⟨ρ2, σ⟩ ⊃ ⟨σ⟩ ⊃ 1 contains a non-normal subgroup of order 2.

Exercise 7. Show that every p-group admits a solvability chain consisting of normal subgroups.

▶ Simple Groups

The strategy of analyzing G through its normal subgroups only has a chance of success

if G has a non-trivial normal subgroup. For most small groups that are not of prime

order, it is not too difficult to prove that they contain a non-trivial normal subgroup.

This leads to the following well-known theorem, whose proof we leave to the reader as

an exercise.

10.18. Theorem. Every group of order n < 60 is solvable.

The alternating group A5 of order 60 = 22 · 3 · 5 is not solvable. Indeed, it follows

easily from 5.11 that the class formula from Exercise 5.42 for A5 is given by 60 =

1 + 15 + 20 + 12 + 12. Every normal subgroup N ◁ A5 is a union of conjugacy classes

that contains the class of the unit element (of order 1). Since, additionally, the order

of N is a divisor of 60, we easily see that only the trivial cases N = 1 and N = A5 can

occur.

This argument shows that A5 not only has no solvability chain but also has no

non-trivial normal subgroups. A group G ̸= 1 with this property is called a simple

group. Every finite group G admits a chain

G = H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hk = 1
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for which Hi+1 is always normal in Hi and the quotient Hi/Hi+1 is simple. If G is

trivial or simple, this statement is immediately clear. For G ̸= 1 not simple, we take a

non-trivial normal subgroup N◁G and use induction to make a chain for G from a chain

for N and the inverse image of a chain for G/N under G→ G/N . Any finite group can

therefore be constructed from a chain having “simple steps,” and the solvable groups

are exactly those for which only cyclic prime steps are required. In somewhat physics-

like terminology, we can state that the simple groups are the “elementary building

blocks” of finite group theory.

Exercise 8. Show that an abelian simple group is cyclic of prime order.

Non-abelian simple groups are relatively rare. The first example after A5 of a non-

abelian simple group is the group SL2(F7)/{±1}, which has order 168. The classi-

fication of finite simple groups undertaken in the 1950s has been one of the biggest

projects in group theory. This classification says that, in addition to several known

infinite families of simple groups, such as the groups of prime order and the alternating

groups An for n ≥ 5, there exist exactly 26 finite simple groups. The last of these 26

so-called sporadic simple groups were only found around 1970 and have exotic names

such as monster and baby monster. The proof of the correctness of the classification,

which counts many thousands of pages, is spread over hundreds of papers, some of

which remain unpublished. To improve the status of this “proof,” a “revision project”

has been started that aims to publish a new and complete proof.37

Exercises.

9. Suppose that a semi-direct product N⋊ϕH is abelian. Prove that N and H are abelian

and that the map ϕ : H → Aut(N) is trivial.

10. Let 1→ N
f−→ G→ H → 1 be an exact sequence of groups, and suppose that f admits

a section p : G→ N . Prove that G is isomorphic to N ×H.

11. Let 1 → A → G → H → 1 be an extension with A abelian, and suppose that the

extension splits. Show that the conjugation action H → Aut(A) does not depend on

the choice of the section s : H → G. [Compare with 4.4.]

12. Show that in the previous exercise, there is also a natural conjugation action H →
Aut(A) if the extension does not split. Describe this action for A = ⟨i⟩ ⊂ G = Q and

H = Q/A ∼= Z/2Z.

13. Show that for every exact sequence 1 → N → G → H → 1, there is an induced

homomorphism H → Out(N), where Out(N) is as in Exercise 4.55.

14. Let G be a group and ϕ : G→ Aut(G) be the conjugation action of G on itself. Prove

that the semi-direct product G⋊ϕ G is isomorphic to the direct product G×G.
[Hint: choose a “better” section G → G ⋊ϕ G to see that this is less unlikely than it

seems at first sight.]

15. Let p be a prime. Prove that Cp × Cp and Cp2 are the only groups of order p2 up to

isomorphism.

133



Algebra I– §10

16. Let G be a non-abelian group of order p3 with p prime. Prove that Z(G) = [G,G] has

order p and that there is an isomorphism G/Z(G) ∼= Z/pZ× Z/pZ.

17. Prove that the dihedral group Dn is solvable for n ≥ 1.

18. Let G be a finite group and N ◁ G be a normal subgroup. Prove that G is solvable if

and only if N and G/N are.

19. Let A be an abelian group of order n. Prove that for every divisor m of n, there is a

subgroup B ⊂ A of order m.

20. Let p be a prime. Show that the conjugation action of G on X = Sylp(G) is transitive.

What is the kernel of the corresponding map G→ S(X)?

21. Show that the regular action of G on the set X = G/P with P ∈ Sylp(G) is transitive.

What is the kernel of the corresponding map G → S(X)? Are Sylp(G) and G/P

isomorphic as G-sets?

22. For the primes p that divide the group order, determine the number of Sylow p-

subgroups of A4 and their structure. Do the same for A5.

23. For every divisor d of 24, determine the number of subgroups of S4 of order d. Which

of these subgroups are normal?

24. Let C be the conjugacy class of (12)(34) ∈ Sn. Prove that for n ∈ {4, 5}, the map

defined by x 7→ Nx (the normalizer of x) is a bijection C → Syl2(Sn).

25. Show that every group of order 200 contains a non-trivial normal subgroup.

26. Show that there are exactly four isomorphism classes of groups of order 30: the cyclic

group C30 and the non-abelian groups D15, D3 × C5, and D5 × C3.

27. Let G be a group of order pqn for p < q both prime and n ≥ 1. Prove: G is solvable.38

[Burnside’s theorem says this is also the case for groups of order pmqn.]

28. LetG be a group of order 2n with n odd. Prove that there is an isomorphismG ∼= N⋊C2

for a normal subgroup N ◁ G of order n.

29. Let G be a group of even order, and suppose that the Sylow 2-subgroups of G are cyclic.

Prove that G contains a normal subgroup of index 2.

30. Let p be a prime and Gp = Aff(Z/pZ) be the affine group over Z/pZ. Prove that for

every prime divisor q | p− 1, the group Gp contains a unique subgroup of order pq and

that this subgroup is not abelian.

31. Let p be a prime and Hp ⊂ GLn(Fp) be a Sylow p-subgroup. Prove: Hp is conjugate

to the subgroup of upper triangular matrices of the form1 ∗ ∗

0
. . . ∗

0 0 1

 .

32. Prove Theorem 10.18.

*33. Let G be a simple group of order 60. We are going to prove that G is isomorphic to A5.
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a. Let n > 1 be the minimal index of a proper subgroup H ⊊ G. Prove: we have

n ≥ 5, and we have G ∼= A5 if n = 5.

b. Prove: G has n3 = 10, n5 = 6, and n2 ∈ {5, 15}; in the case n2 = 5, we have

G ∼= A5.

c. Prove: any two distinct Sylow 2-groups H2 and H ′
2 in G have intersection

H2 ∩H ′
2 = 1. Conclude that n2 ̸= 15, so G ∼= A5 by part b. [Hint: look at

the normalizer of H2 ∩H ′
2.]

*34. Prove that An is simple for n ≥ 5.

[Hint: Take N ◁ An non-trivial and n ≥ 5. Then for every subgroup Gi = {σ ∈ An :

σ(i) = i} ∼= An−1, we have N ∩ Gi = 1, and N has order n. The image of the Cayley

map N → S(N) is now a normal subgroup of the group Alt(N) of even permutations

on the set N , and every even permutation of N that fixes the unit element is an

automorphism.]

35. Let G be a group of order 255. Prove that G is cyclic.

[So there is a big difference between I(255) = I(257) = 1 and I(256).]

*36. Let G be a finite group, and suppose that every maximal subgroup of G is abelian.

Prove that G is solvable.

[A subgroup H ⊂ G is called maximal if we have H ̸= G and every subgroup H ′ ⊋ H

of G is equal to G.]

37. Let n be a positive integer. Prove that the following are equivalent:

i. I(n) = 1;

ii. I(d) = 1 for every divisor d of n;

iii. every group of order n is cyclic;

iv. n is relatively prime to φ(n).

38. Determine all isomorphism classes of groups of orders 20 and 28. Generalize to order

4p for p > 3 prime.

39. Let G ̸= 1 be a group with Aut(G) = 1.

a. Suppose that G is finite. Prove: #G = 2.

[Hint: first prove that G is abelian; then look at inversion.]

b. Show that the assumption in part a that G is finite is, in fact, unnecessary.

40. Let A be a finitely generated abelian group. Prove that Aut(A) is finite if and only if

the free rank of A is not greater than 1.

41. Let G be a group of order n = pq2 with p < q prime. Prove: if p does not divide q2− 1,

then G is abelian, and there are two isomorphism classes of groups of order pq2. What

is the smallest value of n that satisfies these conditions?

42. Show that every automorphism of the additive group Q is of the form x 7→ ax with

a ∈ Q∗. Conclude: Aut(Q) ∼= Q∗.

43. Show that for n ≥ 1 square-free and G = (Z/nZ)k, there is an isomorphism Aut(G) ∼=
GLk(Z/nZ).

44. Show that Aut(C2 × C4) has order 8. Which group from Theorem 10.5 is it?

45. Show that for n > 2, there is an isomorphism Aut(Dn) ∼= Aff(Z/nZ), where Aff(Z/nZ)

is the affine group from 8.14.4.
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46. Show that the wreath product Cp ≀ C2 has order 2p2.

47. Let p be a prime and Bp ⊂ GL3(Fp) be the group of matrices of the form

Mi,j,k =

1 i j

0 1 k

0 0 1

 with i, j, k ∈ Fp.

Prove that Bp is a non-abelian group of order p3 and that Bp is the semi-direct product

of N = {Mi,j,0 : i, j ∈ Fp} ⊂ Bp and H = {M0,0,k : k ∈ Fp} ⊂ Bp. Which group of

order 8 is B2?

48. Let Q be the quaternion group, x ∈ Q be an element of order 4, and y ∈ Q be an element

of Q \ ⟨x⟩. Prove that there is an automorphism ϕ ∈ Aut(Q) such that ϕ(i) = x and

ϕ(j) = y and that Aut(Q) has order 24.

49. Show that every automorphism of Q induces an automorphism of Q/Z(Q) ∼= V4 and

that this leads to an exact sequence 1 → K → Aut(Q) → Aut(Q/Z(Q)) → 1. Prove

that K is a group isomorphic to V4 and consists of the identity and the automorphisms

of Q that send exactly two of the three elements i, j, k ∈ Q to their inverses. Deduce

that there is an isomorphism Aut(Q) ∼= S4.

*50. Let V be the real 3-dimensional vector space with basis {i, j, k} and Aut(Q)→ GL(V )

be the natural linear action of Aut(Q) on V . Prove that Aut(Q) permutes the four

1-dimensional vector spaces generated by each of the elements of the form i± j±k and

that this leads to an isomorphism Aut(Q) ∼= S4.

51. Determine Out(G) = Aut(G)/ Inn(G) for G = Q and for G = Dn.

52. Let N be an abelian group, and suppose that H1 and H2 are conjugate subgroups of

Aut(N). Prove that there is an isomorphism N ⋊H1
∼= N ×H2.

*53. Determine the isomorphism classes of the groups of order 24.

[Hint: We have n2 ∈ {1, 3} and n3 ∈ {1, 4}. There are five groups with n2 = n3 = 1

by 10.5. There are only two groups of order 8 with an automorphism of order 3, so

two groups with n2 = 1 and n3 = 4. There are seven groups with n2 = 3 and n3 = 1.

The only group with n2 = 3 and n3 = 4 is S4. This last statement can be seen by

considering the conjugation action of the group on its Sylow 3-subgroups.]

54. The group G = GL2(F3) of order 48 has a quotient group PSL2(F3) = G/{±1} and

a subgroup SL2(F3) that each have order 24. Determine n2 and n3 for each of these

groups, as well as their position in the list from the previous exercise.

55. Let p be a prime and G be an elementary abelian p-group of rank k. Prove: Aut(G)

is isomorphic to the group GLk(Fp) of invertible k × k matrices over Fp and has order∏k−1
i=0 (p

k − pi).

56. Let p be an odd prime and G be a non-abelian group of order 2p2. Prove: G is

isomorphic to the dihedral group Dp2 , the direct product Cp ×Dp, or the semi-direct

product (Cp×Cp)⋊C2 with respect to the inversion action of C2 on Cp×Cp. Conclude
that I(2p2) = 5.

57. Let p be an odd prime. Prove that there exists a non-abelian group of order p3 in

which every element x ̸= e has order p. *Is this group uniquely determined up to

isomorphism?
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*58. Let p be an odd prime and G be a non-abelian group of order p3 that contains an

element of order p2. Prove: G is isomorphic to the semi-direct product Cp2 ⋊Cp of Cp2

and the unique subgroup Cp ⊂ Aut(Cp2).

59. Prove: I(p3) = 5 for every prime p.
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Table of Small Groups

Order Abelian Non-abelian

1 C1

2 C2

3 C3

4 C4, V4
5 C5

6 C6 D3

7 C7

8 C8, C4 × C2, C2 × C2 × C2 D4, Q

9 C9, C3 × C3

10 C10 D5

11 C11

12 C12, C6 × C2 A4, D6, C3 ⋊ϕ C4

13 C13

14 C14 D7

15 C15

Notation:

An : the alternating group on n symbols

Cn : a cyclic group of order n

Dn: the dihedral group of order 2n

Q : the quaternion group

V4 : the Klein four-group

Justification:

Order 1: exercise

Orders 2, 3, 5, 7, 11, 13: Exercise 4.8

Orders 4 and 9: Theorem 10.4.1

Orders 6, 10, and 14: Theorem 10.4.3

Order 8: Theorem 10.5

Order 12: Theorem 10.13

Order 15: Theorem 10.4.2
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Literatuurverwijzingen

De verwijzingen in dit deel van de syllabus geven een handvat om zelfstandig in een wis-

kundebibliotheek rond te neuzen zonder direct door de bomen het bos niet meer te zien. De

hier verzamelde referenties variëren van populair-wetenschappelijke artikelen, zoals men die in

tijdschriften als de Mathematical Intelligencer vindt, tot leerboeken en onderzoeksartikelen.

Verwacht niet alles in één keer te begrijpen—er is meer wiskunde dan een mensenhoofd kan

bevatten.

Nederlandstalige wiskunde van enig niveau is uiterst schaars, want Nederlanders drukken

zich te pas en te onpas uit in het Engels. Iets oudere literatuur of boeken met grotere oplage

zijn vaak in één van onze beide andere buurtalen, Duits en Frans, geschreven of vertaald.

Voor wie meer Europees dan provinciaal georiënteerd is, kan dat geen groot bezwaar zijn.

Zie eventueel de Europese pagina voor een paar lastige woorden.

1. Er is geen reden om het bij voorbaat eens te zijn met mijn definitie van algebra. Vorm een

eigen oordeel door één van de vele boeken met de titel ‘Algebra’ van de plank te trekken en

eens door te bladeren. Ik noem een aantal boeken die het inkijken meer dan waard zijn, nu en

in de loop van je studie. Naarmate ons college vordert wordt waarschijnlijk duidelijker waar

al deze boeken over gaan. Wie elk half jaar opnieuw kijkt kan zien hoe zijn kennis groeit.

• M. Artin, Algebra, Prentice Hall, 1991. Second edition 2011.

Een aardig modern boek, enigszins in de geest van deze tekst. Sla hoofdstuk 1 gewoon over.

Online: een MAA-review.

• I. R. Shafarevich, Basic notions of algebra, Encyclopaedia of Mathematical Sciences 11,

Springer, 2005.

Geen eerstejaars tekstboek, maar panoramisch geschreven. De standaardvolgorde ‘groepen-

ringen-lichamen’ wordt in dit boek omgedraaid. Een goed medicijn voor wie denkt dat de

wiskunde uit losse onderdelen bestaat die weinig met elkaar of de andere exacte wetenschap-

pen te maken hebben. Online: een MAA-review, en een necrologie.

• S. Lang, Algebra. Springer, revised 3rd edition, 2002.

Een standaardreferentie voor de moderne algebra die door velen gebruikt wordt. Iedere

nieuwe editie is dikker dan de vorige—de laatste heeft ruim 900 bladzijden.

• M. A. Armstrong, Groups and symmetry, Springer UTM, corrected 2nd printing, 1997.

Een leesbaar, niet te dik boekje dat ongeveer dezelfde onderwerpen behandelt als deze syl-

labus.

• J. A. Gallian, Contemporary Abstract Algebra, CRC Press, 10th revised edition, 2020.

Een representant uit de Amerikaanse cultuur van ‘college texts’. Minder zwaar op de hand

dan voorafgaande teksten, vol citaten, computerprogramma’s en biografieën van wiskundigen

die een belangrijke bijdrage hebben geleverd aan het ontstaan van de moderne algebra. Om

de paar jaar verschijnt er een ‘nieuwe’ editie.

• B.L. van der Waerden, Algebra, Springer, 1930. Diverse edities sinds de eerste Duitse

uitgave, ook in het Engels.

Het eerste moderne algebraboek, geschreven door de Nederlandse wiskundige die wat toen

nog Moderne Algebra was leerde bij Emil Artin en Emmy Noether. Zeer de moeite waard.
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2. Wie gëınteresseerd is in de geschiedenis van de wiskunde, of in de tragisch verlopen levens

van een aantal grondleggers van de groepentheorie zoals Galois en Abel kan voor geroman-

tiseerde, enigszins oppervlakkige verhalen terecht bij Bell. Bondiger zijn de schetsjes in het

ten zeerste aanbevolen geschiedenisboekje van Stillwell. Online is er de St. Andrews MacTu-

tor website.

Voor uitgebreidere biografische gegevens is er nog het laatstgenoemde standaardwerk,

een uittreksel uit de Dictionary of Scientific Biography.

• E.T. Bell, Men of mathematics, Simon & Schuster, 1937. Diverse herdrukken.

• J. Stillwell, Mathematics and its history, Springer UTM, 1989.

• Biographical dictionary of mathematicians, 4 vols, Scribner’s, New York, 1991.

3. In de negentiende eeuw werden permutaties ook wel ‘substituties’ genoemd. Wie oude

wiskundeliteratuur leuk vindt kan eens kijken in Netto’s boek, en het vervolgens vergelijken

met de modernere tekst van Dixon en Mortimer.

• E. Netto, Substitutionentheorie und ihre Anwendungen auf die Algebra, Teubner, 1882.

Er is een Engelse vertaling, herdrukt bij Chelsea.

• J. D. Dixon, B. Mortimer, Permutation groups, Springer, 1996.

4. De mededeling dat twee permutaties in Sn ‘al snel’ de hele groep (of in ieder geval An)

voortbrengen krijgt een precieze betekenis in onderstaand artikel.

• John D. Dixon, The probability of generating the symmetric group, Math. Z. 110, 199–

205 (1969).

5. Sam Loyd’s puzzeltje staat bekend als Sam Loyd’s Fifteen. Onderstaand boek ging onder

meer de geschiedenis na, en claimt dat de Amerikaanse postbeambte Noyes Chapman de

eigenlijke uitvinder is.

• Jerry Slocum, Dic Sonneveld, The 15 Puzzle, Slocum Puzzle Foundation: 2006.

6. Over Rubik’s kubus is veel geschreven, van oplosmethodes tot lijsten van ‘mooie patronen’.

Bekijk in onderstaande referenties ‘van het eerste uur’ de literatuurverwijzingen, of kijk op

www.rubiks.com.

• J. van de Craats, De magische kubus van Rubik, De Muiderkring, 1981.

• D. Hofstadter, Metamagical Themas, Scientific American 244, 20–39 (1981).

7. De partitiefunctie p(n), die al bestudeerd werd door Euler, groeit nogal snel met n. Er

geldt

p(n) ≈ eπ
√

2n/3/(4n
√
3).

Opgave 2.?? laat zien dat de waarden van p(n) de machtreekscoëfficiënten zijn van een een-

voudige genererende functie. Studie van deze functie, die in essentie een modulaire vorm

is, heeft in deze eeuw geleid tot representaties van p(n) die de functie ook voor grote n

berekenbaar maken. De waarden van p(n) voor zulke n, waarin niemand ooit enige bijzon-

dere structuur met betrekking tot hun delers heeft gevonden, worden als test-input gebruikt

voor factorisatiealgoritmen zoals genoemd in §7. Hoofdstuk XIX in de volgende klassieke

referentie geeft enige details, hoofdstuk 7 in Grosswald is moderner.

• G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1938.

Er zijn diverse verbeterde herdrukken.
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• E. Grosswald, Topics from the Theory of Numbers, 2nd edition, Birkhäuser, 1984.

8. Voor de maximale orde g(n) van een element in Sn in opgave 2.?? geldt voor grote n

de relatie log g(n) ≈
√
n log n. Omdat je in essentie n als een som van een boel kleine

priemgetallen wilt schrijven is het niet verwonderlijk dat Landau’s boek een bewijs van dit

resultaat geeft, in §61. Andere interessante eigenschappen van de functie g(n), zoals het feit

dat er willekeurig lange intervallen bestaan waarop g constant is, vind je in het artikel van

Nicolas.

• E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, 1909.

Heruitgave: Chelsea, New York, 1953.

• J.-L. Nicolas, Sur l’ordre maximum d’un élément dans le groupe Sn des permutations,

Acta Arithm. 14, 315–332 (1967/68).

9. De Sinterklaaslootjesobservatie in opgave 2.?? komt in veel varianten voor en gaat terug tot

Montmort (1708). Lees hierover de pagina’s 99–101 in onderstaand boek, dat veel interessant

materiaal bevat voor wie van combinatorische problemen houdt.

• W. Feller, An introduction to probability theory, Wiley, 1950.

10. Het bestaan van enantiomeren is van belang in scheikunde en biologie. Wie zelf wil

weten waarom het al dan niet nuttig is om rechtsdraaiende yoghurt te eten raadplege zijn

scheikundeboeken.

11. Het Erlanger Programm van Felix Klein maakte de groep tot een centraal en unifi-

cerend wiskundig concept. Later ontwikkelde takken van meetkunde, zoals de algebräısche

meetkunde, passen niet direct binnen het programma van Klein.

• F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen, Math.

Annalen 43, 63–100 (1893).

Voor een ‘historische evaluatie’ van het Erlanger Programm, en algemener een goed his-

torisch perspectief op wiskundige ideeën, is er een klassiek werk, in voordelige pocketeditie

beschikbaar.

• M. Kline, Mathematical thought from ancient to modern times, Oxford University Press,

1972. Paperback edition, 1990.

12. Voor wie zich wil vermaken met begrippen als oriëntatie, binnen en buiten en andere

topologische concepten in het platte vlak is er een klassiek science fiction-achtig boekje, dat nu

ook verfilmd is (www.flatlandthemovie.com). Verkrijgbaar als Dover-pocket, maar ook in een

recente geannoteerde editie. Zie voor een recensie http://www.ams.org/notices/200210/rev-

dewdney.pdf.

• E. A. Abbott, Flatland, 1882. Heruitgave: The annotated Flatland, a romance of many

dimensions, introduction and notes by Ian Stewart, The Perseus Press, 2002.

13. De eindige ondergroepen van de rotatiegroep O+
3 (R) in 3 dimensies zijn, naast de groepen

Cn en Dn die door realisaties van vlakke symmetrieën als ruimtelijke rotaties ontstaan, alleen

de groep T+ ∼= A4 van rotaties van de tetraëder, de draaiingsgroep K+ van de kubus, en

de groep Icos+ ∼= A5 van rotaties van een regelmatig twaalf- of twintigvlak. Zie hiervoor de

onder referentie 1 genoemde boeken van Artin (stelling V.9.1) of Armstrong (hoofdstuk 19).

Met een beetje extra werk krijgt men hieruit een beschrijving van alle eindige ondergroepen

van de orthogonale groep O3(R) in 3 dimensies, zie de pagina’s 276–277 in onderstaand boek.
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• H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1969.

14. Het idee dat veel ‘standaardconstructies’ in de wiskunde op een soort universele manier

beschreven kunnen worden heeft geleid tot het concept van categorieën. Veel resultaten in

deze hoek staan te boek als ‘abstract nonsense’. Onze isomorfiestelling ?? en soortgelijke

stellingen in §8 als de homomorfiestelling ?? zijn representatieve voorbeelden. Veel moderne

algebraboeken hebben een paragraaf over categorieën. Wij besteden er een hoofdstuk aan in

de syllabus Algebra 3. Het betreft meer een taalgebruik dan een theorie.

• P. J. Hilton, U. Stammbach, A course in homological algebra, Springer GTM 4, 1971.

• S. MacLane, Categories for the working mathematician, Springer GTM 5, 1971.

15. De actie van de modulaire groep SL2(Z) op het complexe bovenhalfvlak is één van de

fundamentele groepswerkingen in de algebra en de complexe analyse. Deze werking en zijn

varianten geven aanleiding tot de theorie van modulaire functies en modulaire vormen. De

rijke verbanden met getaltheorie, meetkunde en complexe analyse maken dit tot een centraal

en intensief bestudeerd deel van de wiskunde. De populariteit ervan is nog eens toegenomen

na het verschijnen van Wiles’ bewijs van de laatste stelling van Fermat – zie verwijzing 22.

Hoofdstuk VII van Serre’s boekje geeft een compacte inleiding.

• J.-P. Serre, A course in arithmetic, Springer GTM 7, 1973. [Dit is de Engelse vertaling

van Cours d’arithmétique, Presses Universitaires de France, 1970.]

16. De constructie van quotiëntruimtes of identificatieruimtes komt men in meetkunde en

topologie tegen. Stillwell’s boekje, dat tevens een aardige inleiding bevat over overeenkomsten

en verschillen tussen Euclidische, sferische en hyperbolische meetkunde, is toegankelijk en

heeft veel plaatjes.

• J. Stillwell, Geometry of surfaces, Springer Universitext, 1992.

17. De beste gepubliceerde afschatting van de functie I(n) in opgave 5.?? schijnt I(n) < nk

met k = cst · n2/3 log n te zijn.

• P. X. Gallagher, Counting finite groups of given order, Math. Zeitschrift 102, 236–237

(1967).

18. Het blijkt dat men groepen soms goed kan bestuderen door ze te laten werken op zo-

genaamde ‘bomen’. Zie hiervoor het onder 1 genoemde boek van Armstrong (Chapter 28),

alsook onderstaand boek van Serre. Serre geeft een voorbeeld van een oneindige groep met

precies twee conjugatieklassen in I.1.4.

• J.-P. Serre, Trees, Springer, 1980. [Dit is de Engelse vertaling van Arbres, amalgames,

SL2, Astérisque 46 (1977).]

19. De axiomatische beschrijving van de natuurlijke getallen door Peano gaat uit van een

‘verzameling’ N van ‘natuurlijke getallen’ met een begrip ‘opvolger’. De axioma’s zeggen

achtereenvolgens dat er een natuurlijk getal ‘0’ is, dat ieder natuurlijk getal een opvolger

heeft, dat zo’n opvolger nooit 0 is, en dat getallen met dezelfde opvolger gelijk zijn. Tenslotte

volgt het bekende axioma van volledige inductie. Zie het onder 11 genoemde boek van Kline

of een logicaboek naar keuze.

20. Er zijn eindeloos veel open problemen met betrekking tot de elementaire eigenschappen

van de gehele getallen.
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• D. Shanks, Solved and unsolved problems in number theory, Chelsea, New York, 3rd

edition, 1985.

21. De Elementen van Euclides vormden eeuwenlang de bijbel van de wiskunde, en na de

echte bijbel de bestseller van de boekdrukkunst. De klemtoon op de tweede lettergreep in

Eucĺıdes is ook al eeuwen oud – maar niet iedereen lijkt dat nog te weten.

Er zijn erg veel edities van de Elementen, onder meer een Dover-pocket in 3 delen met

commentaar van Heath en een handzaam Duits deeltje van de Wissenschaftliche Buchge-

sellschaft. De boeken VII-IX behandelen getaltheorie, en wie zich niet door de meetkundige

formuleringen van de wijs laat brengen vindt diverse stellingen uit §6 terug. Stelling ?? =

IX, §20. ?? = VII, §30. Stelling ?? komt alleen als speciaal geval voor: IX, §14. Wie liever

een klassieke stelling als de stelling van Pythagoras naslaat: I, §47. Zie voor meer informatie

ook de desbetreffende paragraaf in het in 11 genoemde boek van Kline.

22. De beroemde laatste stelling van Fermat, die meer dan 350 jaar een open probleem is

geweest, is uiteindelijk bewezen door Andrew Wiles. Er is veel publiciteit rond dit bewijs

geweest, en de BBC maakte er een aardige documentaire over. De stelling werd aan het

eind van de jaren tachtig door Ribet afgeleid uit een onbewezen vermoeden over elliptische

krommen dat onder de naam Shimura-Taniyama-vermoeden bekend staat. Wiles’ artikel, dat

een belangrijk deel van dit vermoeden bewijst, sluit niet naadloos aan op dit college. De

proceedings van de grote Boston-conferentie in 1995 over Wiles’ bewijs bevatten aanvullende

informatie en de eerste vereenvoudigingen van het bewijs.

• K. A. Ribet, From the Taniyama-Shimura conjecture to Fermat’s last theorem, Ann.

Fac. Sci. Toulouse Math. (5) 11 no. 1, 116–139 (1990).

• A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Math. 141(3),

443–551 (1995).

• G. Cornell, J. H. Silverman, G. Stevens (eds), Modular forms and Fermat’s last theorem,

Springer, 1997.

23. Een gedegen uitleg van de werking van locaal-globaal-principes behoort tot de algebräısche

getaltheorie. Er zijn tamelijk veel boeken over dit onderwerp. Hoofdstuk 3 uit onderstaand

boek is redelijk elementair.

• H. E. Rose, A course in number theory, 2nd edition, Oxford, 1994.

24. De stelling van Dirichlet over priemen in rekenkundige rijen zegt dat voor n ≥ 1 en

a ∈ (Z/nZ)∗ er oneindig veel priemgetallen p ≡ a mod n bestaan. Met andere woorden: in

de rekenkundige rij a, a+ n, a+ 2n, . . . komen oneindig veel priemgetallen voor. De stelling

werd in 1837 met methoden uit de complexe functietheorie bewezen door de Duitser Gustav

Peter Lejeune Dirichlet (1805–1857).

• H. Davenport, Multiplicative Number Theory, 3rd edition, Springer GTM 74, 2000.

25. Mersenne-priemen zijn genoemd naar de Franse monnik Marin Mersenne (1588–1648).

De lijst van Mersenne-priemenMp = 2p−1 is naar men vermoedt oneindig, maar dit is onbe-

wezen. In april 2009 werd de 47e waarde van p gevonden waarvoor Mp priem is. De grootste

Mersenne-exponent is nog steeds de in augustus 2008 gevonden waarde p = 43 112 609, cor-

responderend met een priemgetal van bijna dertien miljoen decimale cijfers. Er is een Great

Internet Mersenne Prime Search waaraan iedereen met een computer met ‘ijdele tijd’ deel

kan nemen. Zie www.mersenne.org voor de bijbehorende internet-site.
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26. Fermat merkte op dat de getallen Fn = 22
n
+1 priem zijn voor n = 0, 1, 2, 3, 4. Zijn opti-

mistische gedachte dat dit voor alle n zo zou zijn bleek niet juist: er zijn geen getallen n > 4

bekend waarvoor Fn priem is. De rij van getallen 22
n
+1 groeit dubbel-exponentieel in n, en

het vermoeden is dat er slechts eindig veel priemgetallen bij zijn. Zie www.prothsearch.net/fermat.html

voor een ‘statusoverzicht’, en Chris Caldwell’s Prime Pages (http://primes.utm.edu) voor

allerhande andere informatie over priemgetallen.

27. In 1992 bewezen Alford, Granville en Pomerance dat er oneindig veel Carmichael-getallen

bestaan. De voordracht van Pomerance op ons nationale KWG-congres van 1992 is uitgewerkt

in het Nieuw Archief.

• C. Pomerance, Carmichael numbers, Nieuw Arch. Wisk. (4) 11, no. 3, 199–209 (1993).

• W. Alford, A. Granville, C. Pomerance, There are infinitely many Carmichael numbers,

Annals of Math. 140, 703–722 (1994)

28. Voor een enigszins algoritmische blik op primaliteit, factorisatie en de eigenschappen van

pseudo-priemtests is het boek van Crandall en Pomerance de beste referentie. Het besteedt

ook aandacht aan de toepassingen van elliptische krommen op primaliteit en factorisatie.

Dunner en meer op de cryptografie gericht zijn de boeken van Koblitz en Buchmann.

Het overzichtsartikel van René Schoof over primaliteitstests in het recent verschenen

MSRI-boek over algoritmische getaltheorie geeft niet alleen de AKS-primaliteitstest uit 2002,

maar ook een beschrijving van de iets oudere, nog steeds zeer effectieve methoden. Ook het

originele AKS-artikel is zeer leesbaar.

• R. Crandall, C. Pomerance, Prime numbers—a computational perspective, second edi-

tion, Springer, 2005.

• N. Koblitz, A Course in Number Theory and Cryptography, Springer GTM 114, 1987.

Second edition 1994.

• J. Buchmann, Einführung in die Kryptographie, Springer, 1999. In diverse talen ver-

taald.

• M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Math. 160, 781–793

(2004). Online-versie: http://annals.math.princeton.edu/wp-content/uploads/annals-

v160-n2-p12.pdf

• J. P. Buhler, P. Stevenhagen (eds), Algorithmic number theory, MSRI Publications

vol. 44, Cambridge University Press, 2008. Webversie op mijn homepage.

29. Hoewel er zogenaamde ‘elementaire bewijzen’ van de priemgetalstelling bestaan, maken

de meeste bewijzen gebruik van enige geavanceerde functietheorie of functionaalanalyse. Een

bewijs van de eerste soort wordt in het onder 7 genoemde boek van Hardy en Wright gegeven.

Voor de tweede soort is er meer keus.

• J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer

4, no. 3, 108–115 (1982).

• W. Rudin, Functional analysis, McGraw-Hill, 1973.

30. De hier gegeven beschrijving van ‘textbook RSA’ gaat voorbij aan een aantal details dat

belangrijk is om een daadwerkelijk veilig systeem te verkrijgen. Zo vermijdt men tegenwoordig

in RSA-implementaties liever al te kleine publieke exponenten.

• D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices Amer. Math. Soc.

46(2), 203–213 (1999).
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31. De getallenlichamenzeef is op dit moment één van de meest effectieve methodes om grote

getallen te factoriseren. Het onder 28 genoemde MSRI-boek heeft een overzichtsartikel van

mijn hand, het Lenstra-boekje heeft meer details. De succesvolle toepassing op de factorisatie

van het negende Fermat-getal F9 is ook goed gedocumenteerd.

• A. K. Lenstra, H. W. Lenstra, Jr. (eds), The development of the number field sieve,

Springer Lecture Notes 1554, 1993.

• A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, The factorization of

the ninth Fermat number, Math. Comp. 61, no. 203, 319–349 (1993).

32. Er blijkt een onverwacht verband te bestaan tussen 5 mod p en p mod 5: de eerste is een

kwadraat in (Z/pZ)∗ dan en slechts dan als de tweede een kwadraat is in (Z/5Z)∗. Dit is een

speciaal geval van de kwadratische reciprociteitswet, die wij in 26.4 zullen bewijzen. Deze

wet werd in 1744 ontdekt door Euler en in 1796 bewezen door de 19-jarige Gauss. Er zijn

bewijzen door ‘slim tellen’, zoals in het boek van Hardy en Wright uit 6, en meer conceptuele

bewijzen zoals het bewijs dat wij in §26 zullen geven.

33. Het is niet bekend of 5 mod p een primitieve wortel is voor oneindig veel priemgetallen p.

Een door de Duitser Emil Artin (1898–1962) uitgesproken vermoeden zegt dat dit wel zo is,

en maakt precies hoeveel van zulke priemen men kan verwachten. Onder aanname van een

onbewezen vermoeden, de zogenaamde gegeneraliseerde Riemann-hypothese voor de ligging

van nulpunten van zeta-functies, kan men Artin’s vermoeden bewijzen.

• M. Ram Murty, Artin’s conjecture for primitive roots, Math. Intelligencer 10, no. 4,

59–67 (1988).

34. Goursat’s lemma, dat genoemd is naar de Fransman Edouard Jean-Baptiste Goursat

(1858–1936), is bijzonder nuttig in de Galoistheorie. Niet iedereen die het lemma kent, kent

het onder deze naam.

35. Het manipuleren van exacte rijtjes wordt meestal tot de homologische algebra gerekend.

Naast het al in 14 genoemde boek van Hilton en Stammbach is er de herdruk van een klassiek

boek van MacLane, één van de grondleggers van het vak.

• S. Maclane, Homology, Springer Classics in Mathematics, 1995.

36. Het karakteriseren van objecten als sommen en producten in deze en de twee voorafgaande

opgaven door een zogenaamde universele eigenschap is een goede gewoonte uit de al onder

14 genoemde categorieëntheorie. Objecten met zo’n karakterisering zijn automatisch op

isomorfie na uniek bepaald. Existentie is echter niet verzekerd!

37. Er zijn verschillende artikelen van Bettina Eick en co-auteurs waarin I(n) voor n < 2000

wordt bepaald.

• H. U. Besche, B. Eick, E. A. O’Brien, A millennium project: constructing small groups,

Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644.

38. De eerste delen van het nu in boekvorm verschijnende bewijs van de classificatie van

eindige simpele groepen zijn inmiddels verschenen. Er is een overzichtsartikel naar aanleiding

van het verschijnen van deel 1.

• R. Solomon, On finite simple groups and their classification, Notices of the Amer. Math.

Soc. 42(2), 231–239 (1995).
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39. De zogenaamde p-q-stelling van Burnside zegt algemener dat iedere groep van orde pmqn

met p en q priem oplosbaar is. Er is meer groepentheorie voor een bewijs nodig dan deze

syllabus bevat. Zie stelling 28.24 in Isaacs voor meer informatie.

• I. M. Isaacs, Algebra, a graduate course, Brooks-Cole, 1994.

40. Voor de existentie van precies zeven verschillende groepen van bandsymmetrieën, zie ook

de artikelen in de Math Intelligencer

• H. McLeay, A Closer Look at the Cast Ironwork of Australia, Mathematical Intelligencer,

16(4), 61–65 (1994).

• R. Wilson, I. Hargittai, M. Hargittai, Stamp corner, One-dimensional space groups,

Mathematical Intelligencer, 18(2), 78–79 (1996).

41. De volgende boeken bevatten informatie over kristallografische groepen, ook over het het

door ons niet behandelde driedimensionale geval.

• I. R. Shafarevich, Algebra I – Basic notions of algebra, Encyclopaedia of Mathematical

Sciences 11, Springer Verlag, 1990.

• H. S. M. Coxeter, Introduction to Geometry, Wiley, 1961.

• D. Hilbert & S. Cohn-Vossen, Anschauliche Geometrie, Springer Verlag,

• M. Artin, Algebra, Prentice Hall, 1991.
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European Pages

Unlike writing mathematics in English, French, or German, reading math in these

languages requires little more than a basic knowledge of the language in question.

The vast majority of mathematical jargon is more or less international, and in most

languages, a word such as “homomorphism” differs little from the English word. There

are a few “tricky” terms whose translation is not obvious. The most important terms

used in these course notes are listed below.

French

anneau ring

application map

corps field

de type fini finitely generated

engendrer generate

ensemble set

opérer sur act on

par récurrence sur by induction on

ppcm (plus petit commun multiple) LCM

pgcd (plus grand commun diviseur) GCD

premier prime

scinder split

sous-groupe distingué normal subgroup

suite sequence
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German

Auswertung evaluation

Bedingung condition

Darstellung representation

Einschränkung restriction

enthalten contain

erzeugen generate

Faser fiber, fibre

gerade, ungerade even, odd

Gitter lattice

Klammer bracket

Körper field

Menge set

Operation action

Satz theorem

Schranke boundary

Spalte (einer Matrix) column (of a matrix)

stetig continuous

Urbild inverse image

Verfahren method

Voraussetzung assumption

Zerlegung decomposition

The Greek Alphabet

In mathematics, there is a great need for symbols to denote variables. In addition to a

few single letters from non-European alphabets, such as the Hebrew aleph ℵ, the entire
Greek alphabet is used by default.

A α alpha N ν nu

B β beta Ξ ξ xi

Γ γ gamma O o omicron

δ δ delta Π π,ϖ pi

E ϵ, ε epsilon P ρ, ϱ rho

Z ζ zeta σ σ, ς sigma

H η eta T τ tau

Θ θ, ϑ theta Υ υ upsilon

I ι iota Φ ϕ, φ phi

K κ kappa X χ chi

Λ λ lambda Ψ ψ psi

M µ mu Ω ω omega
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Index

b-adic number system, 81

p-group, 66, 115, 116

p-rank, 116

p-subgroup, 127

Aff2(R), 39, 41

An, 25, 25

Aut(G), 43, 48

Cn, 35, 36

D4, 11, 12

Dn, 35, 35, 36

End(G), 42

G ∼= G′, 42

G/H, 46

[G : H], 46

G-equivariant, 68

G-set, 57, 58, 134

Gx, 58

Hom(G,G′), 42

I2(R), 32, 33, 101, 125

Inn(G), 48

Map(X,A), 53

N, 71

N ◁ G, 49

O2(R), 32, 33, 34, 101, 125

Out(G), 54, 133, 136

Q, 98

Q∗, R∗, C∗, 43

S(X), 19

Sim2(R), 39, 41

Sn, 19, 21

Sylp(G), 127

Sym(F ), 35

V4, 9

Z(G), 48

Z, Q, R, C, 43

Z/nZ, 51, 71, 75

(Z/nZ)∗, 76, 77

15 puzzle, 26

abelian group, 18, 42, 43, 48, 49, 101, 108

Abelian, N.H., 18

abelianization, 106

abelianization of a group, 97

abstract action, 62

abstraction, 7, 43

action, 29, 57, 101

additive group, 43, 43, 50, 51

additive notation, 43, 71, 74

affine group, 41, 103, 104, 134

affine map, 39, 41

age of the universe, 86

AKS-primaliteitstest, 144

AKS-primality test, 85

algebra, 7, 139

alphabet, 40

alternating group, 23, 25, 64, 68, 70, 98

angle, 31, 32

angle group, 51, 51

annihilate, 114, 116

anti-homomorphism, 58, 67

area-preserving map, 44

Artin’s vermoeden, 145

Artin, E., 145

associativity, 17, 18, 22, 74

automorphism, 43, 49, 58

inner, 48, 67, 95, 97

outer, 54

automorphism group, 43

average, 34, 61

axiom, 7, 71

axioms, 17

baby monster, 133

basis, 112

bijection, 5, 19, 20, 31–34, 46

bijective, 13

binary operation, 8, 17, 74

binomial coefficient, 54

building block, 46, 73, 133

Burnside, W., 60, 146

canonical homomorphism, 48, 50

canonical map, 46, 50, 63

cardinality, 45

Carmichael numbers, 85

carpenter’s wisdom, 86

Cartesian product, 99

category, 42, 99

Cauchy’s theorem, 65, 127

Cauchy, A-L., 65

theorem, 65

Cauchy, A.-L., 60

Cayley’s theorem, 19, 62, 69

Cayley, A., 19, 62

theorem, 19, 62

center, 48, 52, 64, 98, 106

chain, 27

characteristic subgroup, 54, 97

Chinese remainder theorem, 79, 99, 126

choice of a basis, 99

choice of basis, 48

choice of coordinates, 48
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circle, 18

circle group, 47, 51, 100

class, 10

class formula, 69, 132

classification problem, 124, 125

closed, 9

code, 87

collineair, 32

collinear, 32

combinatorics, 61

commutative algebra, 97, 110

commutative diagram, 96, 119

commutative ring, 74

commutator, 27, 97, 98

commutator subgroup, 97, 98

commute, 12, 18, 20, 27, 34, 48, 64

complement, 124

complex analysis, 85

complex conjugation, 38

complex number, 37, 38

complex plane, 38

complexity theory, 84

composite number, 72

composite numbers, 76, 85

compositeness proof, 86

composition, 8, 9, 17, 34, 37, 42

composition law, 17

computer equipment, 84

computer implementation, 77

congruence, 32, 71

conjugacy class, 28, 29, 64, 68–70, 129

conjugate, 28, 58, 64

conjugate subgroup, 40, 58, 63

conjugation, 28, 29, 40, 48, 49, 58, 64, 65

complex, 38

conjugation action, 64, 101

conjugation map, 43

continuous map, 42

contradiction

proof by, 5

coordinate system, 31, 48

coordinates, 31

coprime, 72

coset, 46, 50

cosets, 45

count, 64

countably infinite, 28

counting argument, 76

cryptografie, 144

cryptography, 86

cryptosystem, 87

crystallographic group, 14, 40

crystallography, 31

cube, 56, 59, 61, 100

Dutch, 61

rotation group of the, 57, 61, 64

Rubik’s , 26

the Rubik’s, 30

cubic group, 56, 57, 100, 106

cycle, 13, 20, 21

length of a, 20

parity of a, 25

cycle notation, 13, 20, 21

cycle type, 22, 25, 28, 29, 64

cyclic group, 23, 37, 51, 52, 71, 90

cyclic permutation, 20

cyclic subgroup, 23, 35

cyclotomic fields, 85

cylinder, 63

de la Vallée-Poussin, C., 85

decomposition, 73

determinant, 5, 30, 35, 37, 41, 42

diagram, 95

commutative, 96

diagram chasing, 110

diamond pattern, 16

Diffie–Hellman protocol, 92

digital signature, 88

digitized, 87

dihedral group, 35, 36, 62, 103, 105, 125, 126, 134

generalized, 103, 106

dimension, 112

direct product, 99, 100, 103, 121, 124

direct product , 52

direct sum, 99, 121

Dirichlet, G. P. L., 143

discrete, 114

discrete logarithm, 90

disjoint cycle decomposition, 21, 64, 69, 70

disjoint cycle representation, 21, 21

disjoint cycles, 20

disjoint union, 46

distance, 31, 32, 68, 76

distributivity, 74

divisibility, 72

divisible group, 119

division with remainder, 71, 83

divisor, 72

doing arithmetic modulo n, 51

Dutch cube, 61

efficient, 62

elementary abelian, 116, 126

elementary divisors, 116
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elliptic curve, 85, 92

elliptic geometry, 31

elliptische krommen, 143

embedding, 56, 62

empty product, 18, 20, 22

enantiomer, 30

enantiomeren, 141

endomorphism, 42

entier, 51

equilateral triangle, 15

equivalence class, 28, 46, 53, 60

equivalence relation, 5, 29, 46, 51, 53, 60

Erlanger Programm, 31, 32, 39, 141

Euclid, 31, 72, 85

Euclidean algorithm, 77

extended, 77

Euclidean geometry, 31

Euclidean space, 31

Euclides

Elementen van, 143

klemtoon, 143

Euler’s φ-function , 76

Euler, L., 43, 79, 84, 87, 145

φ function, 79, 91

φ-function, 76, 79

formula, 45, 51

even permutation, 24

exact sequence, 108

exactness, 108

exercise

with a star, 5

exercises, 5

exotic symbols, 17, 43

exp, 43

exponent, 73, 74, 93, 116

exponential algorithm, 86

exponential map, 43, 45

extension, 108, 110

extensions, 109

factor group, 50

factorisatiealgoritmen, 140

factorization, 73, 74

of a homomorphism, 96

factorization algorithm, 86, 89

faithful, 57

Fermat congruence, 84

Fermat number, 82

Fermat, P.

last theorem, 80

little theorem, 80, 84

Fermat, P. de

laatste stelling van, 142, 143

Fermat, P. the, 80

Fermat-getal, 144, 145

fiber, 44, 45

fibered product, 122

fibered sum, 122

Fibonacci numbers, 81

field, 5, 8, 75, 76

finite, 76

finite field, 76

finite geometry, 76

finite group, 18, 27

of Lie type, 76

finite order, 18, 23, 28

finite symmetry group, 36

finitely generated, 23, 28, 108, 113

fixed point, 29, 32, 33, 36, 38, 58, 64, 68

fixed-point-free, 58, 60

four-group

Klein, 10

free abelian group, 112

free group, 112, 113, 114

free rank, 112, 115

Frobenius, G. F., 60

full tetrahedral group, 14

function space, 7

functorial, 105

fundamental group, 5

Galois theory, 8, 131

Galois, E., 8

Gauss’s formula, 82, 91

Gauss, C. F., 145

formula, 82

Gauss, C. F., 85

Gauss, C. F., 68, 71

formula, 91

Gaussian integers, 68

GCD, 72

general linear, 39

generalized dihedral group, 103, 106

generate, 13, 23, 23, 52, 112

generator, 15, 23, 90

genererende functie, 140

geometry, 31

elliptic, 31

Euclidean, 31

Greek, 31

hyperbolic, 31

plane, 31, 38

geschiedenis, 140

glide reflection, 38
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Goursat’s lemma, 106

Goursat, E. J-P., 145

Goursat, E. J-P., 106

lemma, 106

greatest common divisor, 72

Greek mathematics, 31, 71

group, 5, 8, 17, 71

abelian, 18, 43

alternating, 23, 25

cyclic, 23, 37, 51, 66, 71, 90

divisible, 119

finite, 18, 27

finitely generated, 23

simple, 132

solvable, 131, 132

symmetric, 19, 64

group axioms, 17, 19

group of units, 75, 76

group order, 18, 23, 28

group table, 27

group theory, 5

Hadamard, J., 85

Hamilton, W.R., 98

homeomorphic, 68

homologic algebra, 108, 122

homologische algebra, 145

homomorphism, 42

bijective, 42

canonical, 48

image of, 44, 47

injective, 44, 56

trivial, 42

homomorphism property, 43

homomorphism theorem, 96

human life, 86

hyperbola, 9

hyperbolic geometry, 31

ideal, 83

identificatieruimtes, 142

identity, 9, 17

image, 44, 46, 47, 50

index, 46, 53, 63

induction, 5, 14, 20, 71

infinite order, 18, 23, 28

injection, 5

injective, 45

inner automorphism, 48, 49, 97

inner product, 31, 39, 76

integers, 71

invariant, 31, 39, 40

invariant point, 32, 33, 36

inverse, 11, 17, 18, 43, 77, 78

inverse exponent, 88

inverse map, 19

inversion, 25, 103

invertible residue class, 76

irreducibility, 73

irreducible, 83

isometrie, 32

isometry, 33, 37, 101, 125

sign of a, 42, 51

sign of an, 37, 38, 44, 57

isomorphic, 11, 42

isomorphism, 11, 42

isomorphism theorem, 44, 47, 48

isotropy group, 58, 68

kernel, 44, 44–50

Klein four-group, 9, 9, 15, 27, 40, 52, 57, 98, 99

Klein, F., 31, 141

four-group, 9, 9, 10, 15, 27, 40, 52, 57, 98, 99

kubus

van Rubik, 140

kwadratische reciprociteitswet, 145

Lagrange’s theorem, 46, 79

Lagrange, J. L.

theorem, 79

Lagrange, J. L., 45

theorem of, 46

lattice, 114

LCM, 72

least common multiple, 29, 72

ledger, 71

left action, 58, 67

left coset, 45, 45, 46, 49, 53, 58, 63

left multiplication, 19, 25, 45, 62, 63

Legendre, A.-M., 80

lemma van Goursat, 145

length, 58

length of a cycle, 20

Linear algebra, 31

linear algebra, 5, 31, 39, 42, 48, 50, 108, 112, 114

linear component, 37, 37, 42

linear map, 5, 8, 32–34, 42

linearly independent, 112

locaal-globaal-principes, 143

local isometry, 68

local-global principle, 80

log, 43

logarithm, 43

logic, 71

magical octagon, 67
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Magma, 84

Maple, 84

Mathematica, 84

Mathematical Intelligencer, 139

matrix, 5, 8, 48

matrix group, 7

matrix representation, 9

maximal abelian quotient, 97

Mersenne primes, 81

Mersenne, M., 143

modulaire functies, 142

modulaire vorm, 140

modulaire vormen, 142

modular group, 68

module, 108

modulo, 10, 50, 51, 76, 77

modulus, 87

monster, 133

morphism, 42

multiple, 72

multiplication in rings, 74

multiplication table, 10

multiplicative group, 43

multiplicative notation, 17, 43, 74

multiplicativity, 25, 35, 37

natural map, 46, 46

natural number, 71

Nederlandse Spoorwegen, 51

New Year’s puzzle, 16, 69

nilpotent, 128

normal, 49

normal subgroup, 49, 49, 50, 53, 63, 108, 109, 124,

129

normalizer, 64, 64, 69, 134

Noyes Chapman, 140

number field sieve, 89

number theory, 9, 80

octahedron, 67

odd permutation, 24

one-way function, 92

operation, 57

opposite, 43

orange necklace, 67

orbit, 21, 29, 30, 58, 60

orbit decomposition formula, 60

orbit length, 59

orbit space, 60, 63

order, 8, 9, 11–13, 18, 18, 23, 46, 52, 65, 74

oriëntatie, 141

orientation, 35, 37, 38

origin, 31, 32

orthogonal group, 34, 35, 44, 60, 101

orthogonal map, 32, 33

outer, 54

parity, 24–26

parity argument, 15

partitiefunctie, 140

partition, 22

partition function, 29, 120

Peano, G., 71

periodic, 18

permutation, 7, 13, 13, 20, 21, 24, 62

cyclic, 20

even, 24, 25

odd, 24, 25

order of a, 29

parity of a, 24

sign of a, 23, 24–26, 30, 42, 44, 45, 125

permutation character, 60

permutation group, 17, 19, 31, 56, 62

permutation matrix, 30

p-group, 66

p-group, 115, 116, 132

plane, 31

plane figure, 35

plane geometry, 31, 32, 38, 51

plane isometry, 32, 101, 125

plane symmetries, 32, 33

point group, 40

polynomial, 75, 76, 83, 90

polynomial algorithm, 84

polynomial ring, 75, 83

polynomial-time algorithm, 84

postmarking machine, 12

power set, 27, 53

p-rank, 116

primality proof, 85

primality test, 85

prime, 72, 90

prime divisor, 65

prime factor decomposition, 74

prime number, 72

prime order, 46, 65

prime property, 73, 83, 91

prime theorem, 85

primitive root, 91

probabilistic method, 85

product, 11, 13, 17, 43

empty, 18, 20, 22

product group, 78

product of rings, 78

projection, 47, 99
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pseudoprimality test, 93

pseudoprime test, 85

p-subgroup, 127

public exponent, 87

public key cryptosystem, 87

quadratic sieve, 89

quadrilateral, 15

quarter turn, 11

quaternion group, 98, 126

quotiëntruimte, 142

quotient, 50, 60, 81

quotient group, 50, 51, 94, 98

quotient map, 50, 94

quotient space, 50

quotienting step-by-step, 54

rank, 112

reflection, 8, 11, 15, 32–35, 38

regular n-gon, 15

regular action, 62, 63

rekenkundige rij, 143

relatively prime, 72, 111

remainder, 71

repeatedly squaring, 84

representative, 50, 65

residue class, 10, 50, 71, 76

residue class ring, 75, 76

retraction, 110

revision project, 133

rhombus, 8, 9, 11, 35

Riemann zeta function, 85

Riemann-hypothese, 145

right action, 58, 67, 68

right axioms, 27

right coset, 49, 53, 63

right multiplication, 19

ring, 5, 8, 74, 74, 90, 108

ring homomorphism, 75

ring isomorphism, 75

rotation, 15, 32–38

rotation group of the cube, 57, 61, 64

RSA cryptosystem, 87

RSA key, 89

RSA protocol, 88, 89

RSA-protocol

textbook RSA, 144

Rubik’s cube, 26, 30

Rubik’s kubus, 140

SAGE, 84

Sam Loyd, 140

scalar multiplication, 31, 112

secret exponent, 88

Secret Santa, 30

section, 110, 124

semi-direct multiplication, 102

semi-direct product, 101, 102, 103, 124, 125

set theory, 19

shift, 65

Shimura-Taniyama-vermoeden, 143

shoe-sock rule, 18, 23

short exact sequence, 108, 108

split, 109

sign

of a isometry, 42, 51

of a permutation, 23, 24–26, 30, 42, 44, 45,

125

of an isometry, 37, 38, 44, 57

sign group, 44, 52, 100

sign map

seesign, 24

similarity, 39, 40

simple, 132

simple group, 133

sporadic, 133

simplification by generalization, 14

Sinterklaas, 30

smallest prime divisor, 63

solid geometry, 31, 37

solid symmetry, 56

solvability chain, 131, 132

solvable, 131, 132

sorting machine, 13

space diagonal, 56, 59

spatial symmetries, 14

split, 110

splitting, 108, 109, 124

square, 11, 35

square-free, 116

stabilizer, 54, 58

stable, 68

standard basis, 31, 37

stelling van Pythagoras, 143

stereometry, 31, 37

strong induction, 70

structure, 7, 9, 42, 56, 74

subgroup, 22, 23, 32, 34

characteristic, 54, 97

conjugate, 28, 40, 58, 63, 64

cyclic, 23

normal, 49, 49

trivial, 22

substituties, 140

sum, 43
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sum of functions, 53

surface of an inner tube, 68

surjection, 5

swimming, 5

Sylow p-subgroup, 66, 70, 101, 115, 116, 120, 127,

128

Sylow, L., 127

theorem, 128

symmetric difference, 15, 27, 53

symmetric group, 19, 64

symmetries, 11, 43

symmetry, 8, 9, 15, 61

symmetry group, 32, 35, 36, 40, 56, 59

finite, 36

system of representatives, 65, 69

taxonomists, 7

tetrahedral group, 56, 57

tetrahedron, 14, 30

textbook RSA, 144

thermometer, 71

three-quarter turn, 11

Topology, 68

topology, 42

torsion element, 18, 28, 114

torsion group, 115

torsion subgroup, 54, 114

torsion-free, 113, 114

torus, 63, 68

transformation group, 31

transitive, 58, 60

translation, 32, 33, 38, 101

translation subgroup, 40

transport of structure, 46, 53

transposition, 24–26

transpositions, 13

trial division, 74, 85, 86

trivial divisor, 72

trivial element, 9

trivial group, 18, 20, 36, 48, 116

trivial homomorphism, 42

trivial subgroup, 22

trivial symmetry, 9

unique factorization, 73

unit, 75

unit element, 10, 17

universele eigenschap, 145

upper half-plane, 68

upper triangular matrix, 134

vector addition, 31

vector space, 31, 99, 108

visualize, 14

well defined, 50, 75, 94, 96

well-defined, 79

Wiles, A. J., 80, 142, 143

word in the plane, 40

wreath product, 107, 136

yoghurt, 141

zero, 71, 76, 90

zero element, 43
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