
Assignment for the course “Differential geometry”, October 9–13, 2023

Part 1

1.1. Given a, b > 0, the hyperbolic paraboloid is the surface given by

S =

{
(x, y, z) ∈ R3

∣∣∣∣ (xa)2 − (yb)2 − z = 0

}
.

Prove that the map ϕ:R2 → R3 given by

ϕ(x1, x2) =

(
a
x1 + x2

2
, b
x1 − x2

2
, x1x2

)
is a global parametrization of S.

Solution: The set S is the graph of the C∞ function f(x, y) = (x/a)2−(y/b)2 and thus it is a regular surface.
To prove that ϕ is a global parametrization of S, we have to prove that it is a local parametrization and

then that ϕ(R2) = S. Since we already know that S is a regular surface, it suffices to prove the following
three facts:
(i) ϕ(R2) = S;

(ii) ϕ is continuous and injective;
(iii) dϕ has rank 2 at all points.

(i) To prove that ϕ(R2) ⊆ S take (x1, x2) ∈ R2. Then(
1

a
a
x1 + x2

2

)2

−
(

1

b
b
x1 − x2

2

)2

−x1x2 =
x21 + 2x1x2 + x22

4
− x1 − 2x1x2 + x22

4
−x1x2 =

4x1x2
4
−x1x2 = 0 ,

and thus ϕ(x1, x2) ∈ S.
Conversely, take (x, y, z) ∈ S; we have to find (x1, x2) ∈ R2 such that ϕ(x1, x2) = (x, y, z). First of all,

this means that {
ax1+x2

2 = x ,
bx1−x2

2 = y ,
⇐⇒

{
x1 = x

a + y
b ,

x2 = x
a −

y
b .

Since (x, y, z) ∈ S we know that z = (x/a)2 − (y/b)2; hence

ϕ(x1, x2) =

(
a

2

(x
a

+
y

b
+
x

a
− y

b

)
,
b

2

(x
a

+
y

b
− x

a
+
y

b

)
,
(x
a

+
y

b

)(x
a
− y

b

))
=

(
a

2

2x

a
,
b

2

2y

b
,
(x
a

)2
−
(y
b

)2)
= (x, y, z) ,

as required.
(ii) Since the components of ϕ are polynomials, the continuity is immediate. The injectivity is easy too:

ϕ(x1, x2) = ϕ(y1, y2) =⇒
{
ax1+x2

2 = ay1+y22 ,

bx1−x2

2 = by1−y22 ,
⇐⇒

{
2x1 = 2y1 ,
2x2 = 2y2 ,

that is (x1, x2) = (y1, y2), as desired.
(iii) The differential of ϕ is represented by the matrix∣∣∣∣∣∣

a
2

a
2

b
2 − b

2
x2 x1

∣∣∣∣∣∣ .
The determinant of the upper 2×2 matrix is given by a

2

(
− b

2

)
− b

2
a
2 = −ab2 6= 0, and so dϕ has always rank 2.
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1.2. Let V ⊆ R3 be an open subset and f ∈ C∞(V ). Prove that for all a ∈ R the connected components of
the set f−1(a) \Crit(f) are regular surfaces. Deduce that each connected component of C \ {O} is a regular
surface, where

C =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 − z2 = 0

}
is the double-sheeted cone.

Solution: The set Crit(f) of critical points of f is a closed set, because it is the intersection of the zero
sets of the partial derivatives of f . Therefore Ṽ = V \Crit(f) is an open set. Set f̃ = f |Ṽ ; then f̃ ∈ C∞(Ṽ )
has no critical points. This means, by the Proposition we proved in class, that for all a ∈ R the connected
components of the set f̃−1(a) are (empty or) regular surfaces. Since f̃−1(a) = f−1(a) \ Crit(f), this shows
that the connected components of f−1(a) \ Crit(f) are regular surfaces, as desired.

Finally, set f(x, y, z) = x2 + y2 − z2. Then ∇f = (2x, 2y,−2z) and thus Crit(f) = {O}. Since
C = f−1(0), the first part of the exercise implies that the connected components of C\{O} = f−1(0)\Crit(f)
are regular surfaces.

1.3. Prove that the set
S = {(x, y, z) ∈ R3 | x2 + y2 − z3 = 1}

is a regular surface and find an atlas for it.

Solution: Let f :R3 → R be given by f(x, y, z) = x2 + y2 − z3. Then ∇f = (2x, 2y,−3z2) and thus
Crit(f) = {O}. Since f(O) = 0, the only critical value of f is 0; therefore 1 is a regular value and S = f−1(1)
is a regular surface.

We describe an atlas consisting of local parametrization given by graphs of smooth functions. In this way
we automatically know that they are injective, homeomorphisms with their images and that their differentials
have rank 2 and we must only prove that their images cover S.

Put U1 = {(x1, x1) ∈ R2 | x21+x22−1 6= 0} and let ϕ1:U1 → R3 be ϕ1(x1, x2) =
(
x1, x2, (x

2
1+x22−1)1/3

)
.

Clearly, ϕ1(U1) ⊆ S; more precisely, ϕ1(U1) = S \ {z = 0}. Notice that we have to remove z = 0 because
the cubic root is not smooth at zero.

We must now cover the subset {(x, y, 0) | x2 + y2 = 1} ⊂ S, again using graphs. Put

U2 = {(x1, x2) ∈ R2 | 1− x21 + x32 > 0}

and let ϕ2,±:U2 → R3 be ϕ2,±(x1, x2) =
(
±
√

1− x21 + x32, x1, x2
)
; notice that ϕ2,± is not well defined on

(−1, 1)×R but only on U2. Clearly, ϕ2,±(U2) ⊂ S. To see which part of S ∩{z = 0} is covered by ϕ2,±(U2),
notice that ϕ2,±(x1, x2) ∈ S∩{z = 0} if and only if x2 = 0; this implies x21 < 1 and hence ϕ2,+(U2)∪ϕ2,−(U2)
covers all of S ∩ {z = 0} except the two points (0,±1, 0).

To cover the two missing points we define ϕ3,±:U2 → R3 by ϕ3,± =
(
x1,±

√
1− x21 + x32, x2). Then

ϕ3,±(0, 0) = (0± 1, 0) and we have covered everything. In particular,

{(U1, ϕ1), (U2, ϕ2,+), (U2, ϕ2,−), (U2, ϕ3,+), (U2, ϕ3,−)}

is an atlas for S.

Part 2

2.1. Determine a diffeomorphism between the unit sphere S2 ⊂ R3 and the ellipsoid E ⊂ R3 of equation
4x2 + 9y2 + 25z2 = 1.

Solution: Let F :R3 → R3 be given by F (x, y, z) =
(
x
2 ,

y
3 ,

z
5

)
. It is an invertible linear map, whose inverse

is F−1(x, y, z) = (2x, 3y, 5z). Since the restriction of a smooth map of R3 to a surface is still smooth, and
both F and F−1 are smooth in R3, it suffices to show that F (S2) = E to deduce that F |S2 :S2 → E is a
diffeomorphism with inverse F−1|E .

To show that F (S2) ⊆ E, take (x, y, z) ∈ S2 so that x2 + y2 + z2 = 1. Then

4
(x

2

)2
+ 9

(y
3

)2
+ 25

(z
5

)2
= 4

x2

4
+ 9

y2

9
+ 25

z2

25
= x2 + y2 + z2 = 1 ,
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that is F (x, y, z) ∈ E.
Finally, to show that E ⊆ F (S2), take (x, y, z) ∈ E. Then (2x)2 + (3y)2 + (5z)2 = 1, that is

(2x, 3y, 5z) ∈ S2; but F (2x, 3y, 5z) = (x, y, z) and we are done.

2.2. Let S ⊂ R3 be a surface and f ∈ C∞(S). Prove that if p ∈ S is a local minimum or a local maximum
for f then dfp ≡ 0.

Solution: Let ϕ:U → S be a local parametrization of S centered at p. In particular, ϕ(O) = p and a basis

of TpS is given by
{
∂ϕ
∂x1

(O), ∂ϕ∂x2
(O)
}

.

Now, since p is a local minimum or a local maximum for f in S, it follows that O is a local minimum

or a local maximum for f ◦ ϕ:U → R. But this implies that ∂(f◦ϕ)
∂xj

(O) = 0 for j = 1, 2; since

∂(f ◦ ϕ)

∂xj
(O) = dfp

(
∂ϕ

∂xj
(O)

)
,

we deduce that dfp vanishes on a basis of TpS and hence everywhere.
Warning: in general, if ϕ is not a local parametrization, it is not true that d(f ◦ ϕ)O ≡ O implies

dfp ≡ O. Indeed, d(f ◦ ϕ)O = dfp ◦ dϕO; therefore if the image of dϕO is contained in the kernel of dfp then
we can have d(f ◦ϕ)O ≡ O even when dfp 6≡ O. The reason why d(f ◦ϕ)O ≡ O implies dfp ≡ O when ϕ is a
local parametrization is that in this case the image of dϕO is the whole tangent space TpS; therefore saying
that dfp vanishes on the image of dϕO (this is the meaning of the formula dfp ◦ dϕO ≡ O) is equivalent to
saying that dfp vanishes on the whole of TpS and hence dfp ≡ O. To understand even better this argument,
keep in mind that dϕO:R2 → TpS ⊂ R3 while dpp:TpS → R.

Alternative solution: take v ∈ TpS. By definition, there is a curve γ: (−ε, ε) → S such that γ(0) = p
and γ′(0) = v. The function f ◦γ: (−ε, ε)→ R has a local maximum or minimum at 0; hence (f ◦γ)′(0) = 0.
But we saw that dfp(v) = (f ◦ γ)′(0); therefore dfp(v) = 0. Since this holds for all v ∈ TpS we get dfp ≡ O
as desired.

2.3. Let ϕ: (0, 2π)× (0,+∞)→ R3 be given by

ϕ(x1, x2) = (x2 cosx1, x2 sinx1, x
2
2) .

Prove that ϕ is a local parametrization of the elliptic paraboloid S ⊂ R3 given by

S = {(x, y, z) ∈ R3 | x2 + y2 − z = 0}

and then use ϕ to determine a basis of Tp0S, where p0 = (1, 1, 2) ∈ S.

Solution: We already know that S is a surface, because it is the graph of the function f(x, y) = x2+y2. There-
fore to prove that ϕ is a local parametrization it suffices to show that ϕ(U) ⊂ S, where U = (0, 2π)×(0,+∞),
that ϕ is injective and that dϕ has rank 2 everywhere.

Since (x2 cosx1)2 + (x2 sinx1)2 − x22 = 0, we have ϕ(U) ⊂ S. Notice that ϕ(U) is not equal to S. To
compute ϕ(U), first of all remark that, since x2 > 0 by definition, the image of ϕ cannot contain the point
(0, 0, 0) ∈ S. If (x, y, z) ∈ S has z > 0 then we can find x2 > 0 such that z = x22; moreover, x2 + y2 = x22
and hence if (x, y) 6= (x2, 0) we can find x1 ∈ (0, 2π) such that (x, y) = (x2 cosx1, x2 sinx1). Summing up,
we have proved that ϕ(U) = S \ {y = 0}. In particular, ϕ(U) is open in S because it is the intersection of S
with an open set in R3.

Warning: ϕ(U) is open in S but it is not open in R3, because it is not a neighbourhood in R3 of its
points (it does not contain 3-dimensional balls).

To prove that ϕ is injective, first of all notice that ϕ(x1, x2) = ϕ(y1, y2) implies x22 = y22 and hence
x2 = y2 because they are both positive. Therefore (cosx1, sinx1) = (cos y1, sin y1) and then x1 = y1 because
we are assuming x1, y1 ∈ (0, 2π).

Warning: the fact that cosx1 = cos y1 is not enough to conclude that x1 = y1 because cos is not
injective on (0, 2π). For the same reason, the equality sinx1 = sin y1 is not enough. It is the map
(cos, sin): (0, 2π)→ R2 which is injective, not its components.
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Finally, dϕ is represented by the Jacobian matrix∣∣∣∣∣∣
−x2 sinx1 cosx1
x2 cosx1 sinx1

0 2x2

∣∣∣∣∣∣
The determinant of the upper 2 × 2 submatrix is −x2, which is different from zero because x2 ∈ (0,+∞);
therefore dϕ has always rank 2 and we have proved that ϕ is a local parametrization.

Finally, (1, 1, 2) = ϕ
(
π
4 ,
√

2
)
; therefore a basis of Tp0S is given by the two columns of the Jacobian

matrix of ϕ computed at
(
π
4 ,
√

2
)
, that is by

∣∣∣∣∣∣
−1
1
0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

1√
2
1√
2

2
√

2

∣∣∣∣∣∣∣
 .

Warning: to get a basis of TpS when p = ϕ(xo), the two columns of the Jacobian matrix of ϕ must be
computed in the point xo. They should not be computed in the point p, for the simple reason that p does
not belong to the domain of ϕ and it does not make sense to compute the partial derivatives of ϕ in a point
which is not in the domain of ϕ. The correct expression for the vectors of the basis of TpS induced by ϕ is

∂

∂xj

∣∣∣∣
p

=
∂ϕ

∂xj
(xo) ;

in the right-hand side we must have xo ∈ R2 and not p ∈ S ⊂ R3.


