Assignment for the course “Differential geometry”, October 9-13, 2023

Part 1
1.1. Given a, b > 0, the hyperbolic paraboloid is the surface given by

(- 4=+

S = {(:z:,y,z) eR3

Prove that the map cp:R2 — R3 given by

1+ Ty X1 — T
SD($17='E2) = a 2 >b 2 , L1T2

is a global parametrization of S.

Solution: The set S is the graph of the C°° function f(z,y) = (z/a)?— (y/b)? and thus it is a regular surface.
To prove that ¢ is a global parametrization of .S, we have to prove that it is a local parametrization and
then that cp(Rz) = S. Since we already know that S is a regular surface, it suffices to prove the following
three facts:
(i) ¢(R?) = 5;
(ii) ¢ is continuous and injective;
(iii) dy has rank 2 at all points.
(i) To prove that p(R?) C S take (1, 22) € R%. Then
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and thus ¢(z1,22) € S.
Conversely, take (z,y,z) € S; we have to find (z1,z2) € R? such that p(z1,2) = (z,9, 2). First of all,

this means that
ai’“;“ =x, T =
bHEF= =y, Ty =

Since (z,y,z) € S we know that z = (z/a)? — (y/b)?; hence
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as required.

(ii) Since the components of ¢ are polynomials, the continuity is immediate. The injectivity is easy too:

am:am’ 221 = 2y ,
o(r1,22) = @(Y1,92) = {bxlfo - bylflﬂ , { 2z9 = 2y2 ,

that is (z1,22) = (y1,¥2), as desired.
(iii) The differential of ¢ is represented by the matrix

[N

T2 X1

The determinant of the upper 2 x 2 matrix is given by 3 (—g) — %% = —%b # 0, and so dp has always rank 2.
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1.2. Let V C R® be an open subset and f € C>(V). Prove that for all a € R the connected components of
the set f=1(a)\ Crit(f) are reqular surfaces. Deduce that each connected component of C'\ {O} is a regular

surface, where
C={(z,y,2) € R3 ’ e 0}

18 the double-sheeted cone.

Solution: The set Crit(f) of critical points of f is a closed set, because it is the intersection of the zero
sets of the partial derivatives of f. Therefore V = V' \ Crit(f) is an open set. Set f= fly; then fe C>(V)
has no critical points. This means, by the Proposition we proved in class, that for all a € R the connected
components of the set f~'(a) are (empty or) regular surfaces. Since f~'(a) = f~*(a)\ Crit(f), this shows
that the connected components of f~1(a) \ Crit(f) are regular surfaces, as desired.

Finally, set f(x,y,2) = 2% + y?> — 22, Then Vf = (2,2y,—2z) and thus Crit(f) = {O}. Since
C = f71(0), the first part of the exercise implies that the connected components of C\{O} = f~1(0)\ Crit(f)
are regular surfaces.

1.3. Prove that the set
S={(z,y,2) eR’ |2 +¢* = 2 =1}

is a reqular surface and find an atlas for it.

Solution: Let f:R® — R be given by f(z,y,z) = 2° + y> — 2%, Then Vf = (2z,2y, —32%) and thus
Crit(f) = {O}. Since f(O) = 0, the only critical value of f is 0; therefore 1 is a regular value and S = f~1(1)
is a regular surface.

We describe an atlas consisting of local parametrization given by graphs of smooth functions. In this way
we automatically know that they are injective, homeomorphisms with their images and that their differentials
have rank 2 and we must only prove that their images cover S.

Put Uy = {(21,21) € R* | 23 +23 -1 # 0} and let ¢1: Uy — R® be @1 (21, 22) = (21, 22, (23 +23—1)1/3).
Clearly, v1(Uy) C S; more precisely, ¢1(U;) = S\ {z = 0}. Notice that we have to remove z = 0 because
the cubic root is not smooth at zero.

We must now cover the subset {(z,y,0) | 22 + y*> = 1} C S, again using graphs. Put

Us = {(x1,20) € R* |1 — 22 + 23 > 0}

and let o +:Us — R? be w2, 1(T1,22) = (:I: 1—a22 + x%,xl,zg); notice that ¢y + is not well defined on
(—1,1) x R but only on Us,. Clearly, p2 1+ (Uz) C S. To see which part of SN{z = 0} is covered by 2 1 (Us),
notice that @s 4 (z1,72) € SN{z = 0} if and only if x5 = 0; this implies 27 < 1 and hence o ; (Us)Upa,_ (Us)
covers all of SN {z =0} except the two points (0, £1,0).

To cover the two missing points we define @3 +:Us — R® by ¢34 = (21, £y/1 — 27 + 23,22). Then
©3.4(0,0) = (0 £1,0) and we have covered everything. In particular,

{(U1,01), (U2, 02,4 ), (U2, 02, ), (Uz, 3,4), (U2, 03, ) }

is an atlas for S.

Part 2

2.1. Determine a diffeomorphism between the unit sphere S* C R® and the ellipsoid E C R® of equation
42% + 9y* + 2522 = 1.

Solution: Let F:R® — R® be given by F(z,y,z) = (%, %, %) It is an invertible linear map, whose inverse
is F~1(z,y,2) = (2x,3y,5z). Since the restriction of a smooth map of R* to a surface is still smooth, and
both F and F~! are smooth in R?, it suffices to show that F(S?) = E to deduce that F|g>: 5% — E is a

)

diffeomorphism with inverse F~!|g.
To show that F(S?) C E, take (z,y,2) € 5% so that 2% + y* + 22 = 1. Then

T\ 2 Y\ 2 z\ 2 x? y? 22
1(3) +9(d) +25(5) =4 +ol vl =Pyt =1,
5) t9(3) +25(5 9y B =2y



that is F'(z,y,2) € E.
Finally, to show that E C F(S?), take (z,y,2) € E. Then (22)? + (3y)? + (52)? = 1, that is
(2, 3y,5z) € S?; but F(2x,3y,5z) = (,y,2) and we are done.

2.2. Let S C R? be a surface and f € C*°(S). Prove that if p € S is a local minimum or a local mazimum
for f then df, = 0.

Solution: Let ¢:U — S be a local parametrization of S centered at p. In particular, ¢(O) = p and a basis
of T,,S is given by { 9% (0) 8—“’(0)}.

oz ) Oxo
Now, since p is a local minimum or a local maximum for f in S, it follows that O is a local minimum

or a local maximum for f o ¢: U — R. But this implies that 3((9)“7;4’)(0) =0 for j =1, 2; since

<9<£;%0>(0> = df (5:,(0)) ,

we deduce that df,, vanishes on a basis of 7},S and hence everywhere.

Warning: in general, if ¢ is not a local parametrization, it is not true that d(f o ¢)o = O implies
dfp, = O. Indeed, d(f o ¢)o = df}, o dpo; therefore if the image of dyo is contained in the kernel of df, then
we can have d(f o ¢)o = O even when df, # O. The reason why d(f o ¢)o = O implies df, = O when ¢ is a
local parametrization is that in this case the image of dyo is the whole tangent space T,S; therefore saying
that df, vanishes on the image of dyo (this is the meaning of the formula df, o dpo = O) is equivalent to
saying that df;, vanishes on the whole of T},,S and hence df, = O. To understand even better this argument,
keep in mind that dpo:R* — T,S C R? while dp,:T,S — R.

Alternative solution: take v € T),S. By definition, there is a curve ~:(—e,e) — S such that v(0) = p
and 7/(0) = v. The function fo~v:(—¢,¢) — R has a local maximum or minimum at 0; hence (f o~v)’(0) = 0.
But we saw that df,(v) = (f o v)’(0); therefore df,(v) = 0. Since this holds for all v € T,,S we get df, = O
as desired.

2.3. Let ¢:(0,27) x (0,400) — R? be given by
@(x1,29) = (T2 cos Ty, 2o SIN T, 23) .

Prove that ¢ is a local parametrization of the elliptic paraboloid S C R? given by
S={(z,y,2) eR® | 2? +4*> — 2 =0}

and then use ¢ to determine a basis of Ty, S, where po = (1,1,2) € S.

Solution: We already know that S is a surface, because it is the graph of the function f(x,y) = x%2+y>. There-
fore to prove that ¢ is a local parametrization it suffices to show that ¢(U) C .S, where U = (0, 27) x (0, +-00),
that ¢ is injective and that dy has rank 2 everywhere.

Since (22 cosx1)? + (w2 sinxy)? — 23 = 0, we have ¢(U) C S. Notice that ¢(U) is not equal to S. To
compute ¢(U), first of all remark that, since z2 > 0 by definition, the image of ¢ cannot contain the point
(0,0,0) € S. If (z,y,2) € S has z > 0 then we can find x5 > 0 such that z = x3; moreover, 2% + y? = z3
and hence if (z,y) # (x2,0) we can find x; € (0,27) such that (z,y) = (x2cosxy, zasinz;). Summing up,
we have proved that p(U) = S\ {y = 0}. In particular, ¢(U) is open in S because it is the intersection of S
with an open set in R”.

Warning: ¢(U) is open in S but it is not open in R®, because it is not a neighbourhood in R?® of its
points (it does not contain 3-dimensional balls).

To prove that ¢ is injective, first of all notice that o(xq,22) = ©(y1,y2) implies 23 = y2 and hence
Z9 = Yo because they are both positive. Therefore (cosz1,sinzq) = (cosyi,siny;) and then z; = y; because
we are assuming z1, y; € (0,27).

Warning: the fact that cosx; = cosy; is not enough to conclude that z; = y; because cos is not
injective on (0,27). For the same reason, the equality sinxz; = siny; is not enough. It is the map
(cos, sin): (0, 27) — R? which is injective, not its components.
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Finally, dyp is represented by the Jacobian matrix

—Tosinx; cosxy
TocosxTy sinzg
0 21‘2

The determinant of the upper 2 x 2 submatrix is —xs, which is different from zero because x5 € (0, +00);
therefore dy has always rank 2 and we have proved that ¢ is a local parametrization.
Finally, (1,1,2) = @(%, \/Q), therefore a basis of T},,S is given by the two columns of the Jacobian

matrix of ¢ computed at (Z,v/2), that is by

|
Sh-sh-

2

2V2

Warning: to get a basis of T),S when p = ¢(z°), the two columns of the Jacobian matrix of ¢ must be
computed in the point z°. They should not be computed in the point p, for the simple reason that p does
not belong to the domain of ¢ and it does not make sense to compute the partial derivatives of ¢ in a point
which is not in the domain of ¢. The correct expression for the vectors of the basis of 7},S induced by ¢ is

0| 00,
8£Ej p N 6Ij '

in the right-hand side we must have 2° € R? and not p € S C R?.



