DIFFERENTIAL GEOMETRY ASSIGNMENT #2 IMM, LUMS

ABDELGHANI ZEGHIB

(Please give solutions for at least 4 exercises.)

Exercise 1. (Surfaces of revolution). Consider a surface S of revolution determined by a curve $t \to (\alpha(t), 0, \beta(t))$, where t belongs to some interval I.

- Compute all the geometric characteristics of S: first and second fundamental forms, area, Gaussian curvature K, mean curvature H, principal curvatures k_1, k_2 , and principal directions. (Preliminary to that, show that S is orientable).
 - Classify the cases where S has a constant curvature K=0,+1, or -1.

Exercise 2. Recall (and give details) why the second fundamental form of a surface S seen as a graph of a function h on its tangent plane at a point p, is the Hessian of h at p?

- Deduce the familiar interpretation of the sign of K(p) (where K is the Gaussian curvature) by means of the relative position of S with respect to its tangent plane T_pS .
- **Exercise 3.** Prove that a ruled surface S has a nonpositive Gaussian curvature. Prove that a minimal surface has a nonpositive Gaussian curvature: $K \le 0$.

Exercise 4. Recall the construction of the pseudo-sphere S, and show in particular that it has constant Gaussian curvature -1.

- Show that the pseudo sphere can not be extended to a smooth surface, that if S is contained in a (regular) surface S', then S' = S. (Hint compute the mean curvature of S).

Exercise 5. Let $S_c = \{(x, y, z)/x^2 + y^2 - z^2 = c\}$. For which value S_c is a regular surface? Show that for c > 0, S_c is (doubly) ruled.

Exercise 6. Let S be a (regular) orientable surface in \mathbb{R}^3 . Assume S compact.

- We want to prove that the Gauss map $N:S\to\mathbb{S}^2$ is surjective. For this, let P be a vectorial plane $\subset \mathbb{R}^3$. Consider $\pi:\mathbb{R}^3\to P^\perp$, the orthogonal projection of \mathbb{R}^3 on P^\perp , the orthogonal line to P. Its levels are affine planes parallel to P. Identify P^\perp to \mathbb{R} , and consider f, the restriction of π to S. - Show that if p is such that f(p) is maximal or minimal, then $T_pS=P$, and moreover S lies on one side of T_pS . This means that N(p) is collinear to P^\perp , that is N(p)=u, with $u\in P^\perp$. By considering both points where f is maximal and minimal, prove that , also -u can be reached by N, and so $N:S\to\mathbb{S}^2$ is surjective.

Date: Version # 1, October 27, 2023.

- Consider $X \subset S$, the set of points $p \in S$ such that S lies in one side of T_pS (seen as a affine plane). Show that X is closed. Show that the image of X by the Gauss map equals \mathbb{S}^2 . Show that for any $p \in X$, $K(p) \geq 0$ (Use Exercise 2). Show that for $x \in X$, K(p) = 0 iff p is singular for the Gauss map N.
- Sard's Theorem says that a C^{∞} map between surfaces has regular values. Use it to show that there exists an elliptic point $p \in X$.

Exercise 7. Classify ruled surfaces of revolution.

- **Exercise 8.** (Geodesics of surfaces of revolution) Let S be a surface of revolution determined by a curve $m_0: t \in [0,1] \to (\alpha(t),0,\beta(t))$. Let $c:[a,b] \to S$ be a curve in S ($a,b \in [0,1]$), of the form: $c(t) = (\alpha(t)\cos\theta(t),\alpha(t)\sin(\theta(t),\beta(t))$. Let I be an interval contained in $[a,b] \subset [0,1]$. Show that the length of c restricted to I is greater than the length of m_0 restricted to I. Apply this to curves such that $c(a) = m_0(a), c(b) = m_0(b)$ to deduce that m_0 is a geodesic curve.
- The curve m_0 as well as its images by rotations around the z-axis are called meridians. So, all meridians are geodesic.
 - Deduce that the geodesic of the sphere are great circles.
 - Prove that a meridian (more precisely its support) is a normal section of S.
- **Exercise 9.** From the differential point of view, a geodesic in surface S, is a curve γ for which the normal curvature (as a curve in S) coincides with its (usual) curvature as a curve in \mathbb{R}^3 . (This definition naturally coincides with the metric one with respect to the intrinsic distance d_S^{int} , saying that the distance along γ equals the length...).
- Show that the geodesics of an affine plane are (contained in) affine lines, and the geodesics of \mathbb{S}^2 are (contained in) great circles.
 - Show that meridians of surface of revolution are geodesics.
- In general, say an affine plane ${\bf P}$ is normal to S, if for each $p\in {\bf P}\cap S$, the normal N_p is tangent to ${\bf P}$. In this case, $p\in {\bf P}\cap S$, is, locally (i.e. near of any of its points) a curve γ . Show that such a γ is geodesic. Show that the meridians of a surface of revolution arize in this way.
- **Exercise 10**. Consider $S = \mathbb{S}^2$ the unit sphere in \mathbb{R}^3 , endowed with the canonical basis e_1, e_2, e_3 (corresponding to x, y and z-axes). Denote by R^i_{θ} to rotation of angle θ around the axis $\mathbb{R}e_i$. Consider the four points: $a_1 = R^3_{\theta}(e_2), a_2 = R^3_{-\theta}(e_2), a_3 = R^1_{\theta}(e_2), a_4 = R^1_{-\theta}(e_2)$ (so a_1 is the image of e_2 by a rotation of angle θ around the z-axis, ...).
 - Compute all the distances $d^{int}_{\mathbb{S}^2}(a_i,a_j)$ (for the intrinsic distance of \mathbb{S}^2) .
- Denote $X=\{a_1,a_2,a_3,a_4\}$ this subset of four points in \mathbb{S}^2 and endow it with the induced distance (form $d^{int}_{\mathbb{S}^2}$). Let Y the subset of five points $Y=X\cup\{e_2\}$.
- Show that there is no isometric embedding (i.e a distance preserving map) $X \to \mathbb{R}^2$.
- What about isometric embeddings of X or Y in higher dimensional Euclidean spaces \mathbb{R}^n (especially \mathbb{R}^3)?