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CHAPTER 1

Local theory of curves

Elementary geometry gives a fairly accurate and well-established notion of what
is a straight line, whereas is somewhat vague about curves in general. Intuitively,
the difference between a straight line and a curve is that the former is, well, straight
while the latter is curved. But is it possible to measure how curved a curve is, that
is, how far it is from being straight? And what, exactly, is a curve? The main
goal of this chapter is to answer these questions. After comparing in the first two
sections advantages and disadvantages of several ways of giving a formal definition
of a curve, in the third section we shall show how Differential Calculus enables us
to accurately measure the curvature of a curve. For curves in space, we shall also
measure the torsion of a curve, that is, how far a curve is from being contained in
a plane, and we shall show how curvature and torsion completely describe a curve
in space.

1.1. How to define a curve

What is a curve (in a plane, in space, in Rn)? Since we are in a mathematical
course, rather than in a course about military history of Prussian light cavalry, the
only acceptable answer to such a question is a precise definition, identifying exactly
the objects that deserve being called curves and those that do not. In order to get
there, we start by compiling a list of objects that we consider without a doubt to
be curves, and a list of objects that we consider without a doubt not to be curves;
then we try to extract properties possessed by the former objects and not by the
latter ones.

Example 1.1. Obviously, we have to start from straight lines. A line in a plane
can be described in at least three different ways:

– as the graph of a first degree polynomial: y = mx+ q or x = my + q;
– as the vanishing locus of a first degree polynomial: ax+ by + c = 0;
– as the image of a map f : R→ R2 having the form f(t) = (αt+β, γt+ δ).

A word of caution: in the last two cases, the coefficients of the polynomial (or of
the map) are not uniquely determined by the line; different polynomials (or maps)
may well describe the same subset of the plane.

Example 1.2. If I ⊆ R is an interval and f : I → R is a (at least) continuous
function, then its graph

Γf =
{(
t, f(t)

) ∣∣ t ∈ I} ⊂ R2

surely corresponds to our intuitive idea of what a curve should be. Note that we
have

Γf = {(x, y) ∈ I × R | y − f(x) = 0} ,
1
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that is a graph can always be described as a vanishing locus too. Moreover, it also
is the image of the map σ : I → R2 given by σ(t) =

(
t, f(t)

)
.

Remark 1.1. To be pedantic, the graph defined in last example is a graph
with respect to the first coordinate. A graph with respect to the second coordinate
is a set of the form

{(
f(t), t

) ∣∣ t ∈ I
}

, and has the same right to be considered
a curve. Since we obtain one kind of graph from the other just by permuting the
coordinates (an operation which geometrically amounts to reflecting with respect
to a line), both kinds of graphs are equally suitable, and in what follows dealing
with graphs we shall often omit to specify the coordinate we are considering.

Example 1.3. A circle (or circumference) with center (x0, y0) ∈ R2 and ra-
dius r > 0 is the curve having equation

(x− x0)2 + (y − y0)2 = r2 .

Note that it is not a graph with respect to either coordinate. However, it can be
represented as the image of the map σ : R→ R2 given by

σ(t) = (x0 + r cos t, y0 + r sin t) .

Example 1.4. Open sets in the plane, closed disks and, more generally, subsets
of the plane with non-empty interior do not correspond to the intuitive idea of curve,
so they are to be excluded. The set [0, 1]× [0, 1] \Q2, in spite of having an empty
interior, does not look like a curve either.

Let us see which clues we can gather from these examples. Confining ourselves
to graphs for defining curves is too restrictive, since it would exclude circles, which
we certainly want to consider as curves (however, note that circles locally are graphs;
we shall come back to this fact later).

The approach via vanishing loci of functions looks more promising. Indeed, all
the examples we have seen (lines, graphs, circles) can be described in this way; on
the other hand, an open set in the plane or the set [0, 1]× [0, 1] \Q2 cannot be the
vanishing locus of a continuous function (why?).

So we are led to consider sets of the form

C = {(x, y) ∈ Ω | f(x, y) = 0} ⊂ R2

for suitable (at least) continuous functions f : Ω→ R, where Ω ⊆ R2 is open.
We must however be careful. Sets of this kind are closed in the open set Ω, and

this is just fine. But the other implication hold as well:

Proposition 1.1. Let Ω ⊆ Rn be an open set. Then a subset C ⊆ Ω is
closed in Ω if and only if there exists a continuous function f : Ω → R such that
C = {x ∈ Ω | f(x) = 0} = f−1(0).

Proof. It is enough to define f : Ω→ R by setting

f(x) = d(x,C) = inf{‖x− y‖ | y ∈ C} ,
where ‖ · ‖ is the usual Euclidean norm in Rn. Indeed, f is obviously continuous,
and x ∈ C if and only if f(x) = 0 (why?). �

So, using continuous functions we get sets that clearly cannot be considered
curves. However, the problem could be caused by the fact that continuous functions
are too many and not regular enough; we might have to confine ourselves to smooth
functions.
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(Un)fortunately this precaution is not enough. Indeed, it is possible to prove
the following

Theorem 1.1 (Whitney). Let Ω ⊆ Rn be an open set. Then a subset C ⊆ Ω is
closed in Ω if and only if there exists a function f : Ω → R of class C∞ such that
C = f−1(0).

In other words, any closed subsets is the vanishing locus of a C∞ function, not
just of a continuous function, and the idea of defining the curves as vanishing loci
of arbitrary smooth functions has no chance of working.

Let’s take a step back and examine again Examples 1.1, 1.2, and 1.3. In all
those cases, it is possible to describe the set as the image of a mapping. This
corresponds, in a sense, to a dynamic vision of a curve, thought of as a locus
described by a continuously (or differentiably) moving point in a plane or in space
or, more in general, in Rn. With some provisos we shall give shortly, this idea turns
out to be the right one, and leads to the following definition.

Definition 1.1. Given k ∈ N ∪ {∞} and n ≥ 2, a parametrized curve of
class Ck in Rn is a map σ : I → Rn of class Ck, where I ⊆ R is an interval. The
image σ(I) is often called support (or trace) of the curve; the variable t ∈ I is the
parameter of the curve. If I = [a, b] and σ(a) = σ(b), we shall say that the curve is
closed.

Remark 1.2. If I is not an open interval, and k ≥ 1, saying that σ is of class Ck

in I means that σ can be extended to a Ck function defined in an open interval
properly containing I. Moreover, if σ is closed of class Ck, unless stated otherwise
we shall always assume that

σ′(a) = σ′(b), σ′′(a) = σ′′(b), . . . , σ(k)(a) = σ(k)(b) .

In particular, a closed curve of class Ck can always be extended to a periodic
map σ̂ : R→ Rn of class Ck.

Example 1.5. The graph of a map f : I → Rn−1 of class Ck is the image of
the parametrized curve σ : I → Rn given by σ(t) =

(
t, f(t)

)
.

Example 1.6. For v0, v1 ∈ Rn with v1 6= O, the parametrized curve σ : R→ Rn
given by σ(t) = v0 + tv1 has as its image the straight line through v0 in the
direction v1.

Example 1.7. The two parametrized curves σ1, σ2 : R→ R2 given by

σ1(t) = (x0 + r cos t, y0 + r sin t) and σ2(t) = (x0 + r cos 2t, y0 + r sin 2t)

both have as their image the circle having center (x0, y0) ∈ R2 and radius r > 0.

Example 1.8. The parametrized curve σ : R→ R3 given by

σ(t) = (r cos t, r sin t, at) ,

with r > 0 and a ∈ R∗, has as its image the circular helix having radius r e pitch a;
see Fig 1.(a). The image of the circular helix is contained in the right circular
cylinder having equation x2 + y2 = r2. Moreover, for each t ∈ R the points σ(t)
and σ(t + 2π) belong to the same line parallel to the cylinder’s axis, and have
distance 2π|a|.
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(a) (b) (c)

Figure 1. (a) circular helix; (b) non-injective curve; (c) folium of Descartes

Example 1.9. The curve σ : R → R2 given by σ(t) = (t, |t|) is a continuous
parametrized curve which is not of class C1 (but see Exercise 1.11).

All the parametrized curves we have seen so far (with the exception of the circle;
we’ll come back to it shortly) provide a homeomorphism between their domain and
their image. But it is not always so:

Example 1.10. The curve σ : R → R2 given by σ(t) = (t3 − 4t, t2 − 4) is a
non-injective parametrized curve; see Fig. 1.(b).

Example 1.11. The curve σ : (−1,+∞)→ R2 given by

σ(t) =

(
3t

1 + t3
,

3t2

1 + t3

)
is an injective parametrized curve, but it is not a homeomorphism with its image
(why?). The set obtained by taking the image of σ, together with its reflection
across the line x = y, is the folium of Descartes; see Fig. 1.(c).

We may also recover some vanishing loci as parametrized curves. Not all of
them, by Whitney’s Theorem 1.1; but we shall be able to work with vanishing loci
of functions f having nonzero gradient ∇f , thanks to a classical Calculus theorem,
the implicit function theorem (you can find its proof, for instance, in [3, p. 148]):

Theorem 1.2 (Implicit function theorem). Let Ω be an open subset of Rm×Rn,
and F : Ω → Rn a map of class Ck, with k ∈ N∗ ∪ {∞}. Denote by (x, y) the
coordinates in Rm+n, where x ∈ Rm and y ∈ Rn. Let p0 = (x0, y0) ∈ Ω be such
that

F (p0) = O and det

(
∂Fi
∂yj

(p0)

)
i,j=1,...,n

6= 0 .

Then there exist a neighborhood U ⊂ Rm+n of p0, a neighborhood V ⊂ Rm of x0

and a map g : V → Rn of class Ck such that U ∩ {p ∈ Ω | F (p) = O} precisely
consists of the points of the form

(
x, g(x)

)
with x ∈ V .

Using this we may prove that the vanishing locus of a function having nonzero
gradient is (at least locally) a graph:
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Proposition 1.2. Let Ω ⊆ R2 be an open set, and f : Ω → R a function of
class Ck, with k ∈ N∗ ∪ {∞}. Choose p0 ∈ Ω such that f(p0) = 0 but ∇f(p0) 6= O.
Then there exists a neighborhood U of p0 such that U ∩ {p ∈ Ω | f(p) = 0} is the
graph of a function of class Ck.

Proof. Since the gradient of f in p0 = (x0, y0) is not zero, one of the partial
derivatives of f is different from zero in p; up to permuting the coordinates we can
assume that ∂f/∂y(p0) 6= 0. Then the implicit function Theorem 1.2 tells us that
there exist a neighborhood U of p0, an open interval I ⊆ R including x0, and a
function g : I → R of class Ck such that U ∩ {f = 0} is exactly the graph of g. �

Remark 1.3. If ∂f/∂x(p) 6= 0 then in a neighborhood of p the vanishing locus
of f is a graph with respect to the second coordinate.

In other words, the vanishing locus of a function f of class C1, being locally
a graph, is locally the support of a parametrized curve near the points where the
gradient of f is nonzero.

Example 1.12. The gradient of the function f(x, y) = (x−x0)2+(y−y0)2−r2 is
zero only in (x0, y0), which does not belong to the vanishing locus of f . Accordingly,
each point of the circle with center (x0, y0) and radius r > 0 has a neighborhood
which is a graph with respect to one of the coordinates.

Remark 1.4. Actually, it can be proved that a subset of R2 which is locally a
graph always is the support of a parametrized curve.

However, the definition of a parametrized curve is not yet completely satisfying.
The problem is that it may well happen that two parametrized curves that are
different as maps describe what seems to be the same geometric set. An example
is given by the two parametrized curves given in Example 1.7, both having as
their image a circle; the only difference between them is the speed with which
they describe the circle. Another, even clearer example (one you have undoubtedly
stumbled upon in previous courses) is the straight line: as recalled in Example 1.1,
the same line can be described as the image of infinitely many distinct parametrized
curves, just differing in speed and starting point.

On the other hand, considering just the image of a parametrized curve is not
correct either. Two different parametrized curves might well describe the same
support in geometrically different ways: for instance, one could be injective whereas
the other comes back more than once on sections already described before going
on. Or, more simply, two different parametrized curves might describe the same
image a different number of times, as is the case when restricting the curves in
Example 1.7 to intervals of the form [0, 2kπ].

These considerations suggest to introduce an equivalence relation on the class of
parametrized curves, such that two equivalent parametrized curves really describe
the same geometric object. The idea of only allowing changes in speed and starting
point, but not changes in direction or retracing our steps, is formalized using the
notion of diffeomorphism.

Definition 1.2. A diffeomorphism of class Ck (with k ∈ N∗ ∪ {∞}) between
two open sets Ω, Ω1 ⊆ Rn is a homeomorphism h : Ω → Ω1 such that both h and
its inverse h−1 are of class Ck.
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More generally, a diffeomorphism of class Ck between two sets A, A1 ⊆ Rn
is the restriction of a diffeomorphism of class Ck of a neighborhood of A with a
neighborhood of A1 and sending A onto A1.

Example 1.13. For instance, h(x) = 2x is a diffeomorphism of class C∞ of R
with itself, whereas g(x) = x3, even though it is a homeomorphism of R with itself, is
not a diffeomorphism, not even of class C1, since the inverse function g−1(x) = x1/3

is not of class C1.

Definition 1.3. Two parametrized curves σ : I → Rn and σ̃ : Ĩ → Rn of
class Ck are equivalent if there exists a diffeomorphism h : Ĩ → I of class Ck such
that σ̃ = σ ◦ h; we shall also say that σ̃ is a reparametrization of σ, and that h is a
parameter change.

In other words, two equivalent curves only differ in the speed they are traced,
while they have the same image, they curve (as we shall see) in the same way, and
more generally they have the same geometric properties. So we have finally reached
the official definition of what a curve is:

Definition 1.4. A curve of class Ck in Rn is an equivalence class of pa-
rametrized curves of class Ck in Rn. Each element of the equivalence class is
a parametrization of the curve. The support of a curve is the support of any
parametrization of the curve. A plane curve is a curve in R2.

Remark 1.5. We shall almost always use the phrase “let σ : I → Rn be a curve”
to say that σ is a particular parametrization of the curve under consideration.

Some curves have a parametrization keeping an especially strong connection
with its image, and so they deserve a special name.

Definition 1.5. A Jordan (or simple) arc of class Ck in Rn is a curve admitting
a parametrization σ : I → Rn that is a homeomorphism with its image, where I ⊆ R
is an interval. In this case, σ is said to be a global parametrization of C. If I is an
open (closed) interval, we shall sometimes say that C is an open (closed) Jordan
arc.

Definition 1.6. A Jordan curve of class Ck in Rn is a closed curve C admitting
a parametrization σ : [a, b] → Rn of class Ck, injective both on [a, b) and on (a, b].
In particular, the image of C is homeomorphic to a circle (why?). The periodic
extension σ̂ of σ mentioned in Remark 1.2 is a periodic parametrization of C.
Jordan curves are also called simple curves (mostly when n > 2).

Example 1.14. Graphs (Example 1.2), lines (Example 1.6) and circular he-
lices (Example 1.8) are Jordan arcs; the circle (Example 1.3) is a Jordan curve.

Example 1.15. The ellipse E ⊂ R2 with semiaxes a, b > 0 is the vanishing
locus of the function f : R2 → R given by f(x, y) = (x/a)2 + (y/b)2 − 1, that is,

E =

{
(x, y) ∈ R2

∣∣∣∣ x2

a2
+
y2

b2
= 1

}
.

A periodic parametrization of E of class C∞ is the map σ : R → R2 given by
σ(t) = (a cos t, b sin t).
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Example 1.16. The hyperbola I ⊂ R2 with semiaxes a, b > 0 is the vanishing
locus of the function f : R2 → R given by f(x, y) = (x/a)2 − (y/b)2 − 1, that is,

I =

{
(x, y) ∈ R2

∣∣∣∣ x2

a2
− y2

b2
= 1

}
.

A global parametrization of the component of I contained in the right half-plane is
the map σ : R→ R2 given by σ(t) = (a cosh t, b sinh t).

In the Definition 1.3 of equivalence of parametrized curves we allowed the di-
rection in which the curve is described to be reversed; in other words, we also
admitted diffeomorphisms with negative derivative everywhere. As you will see, in
some situations it will be important to be able to distinguish the direction in which
the curve is traced; so we introduce a slightly finer equivalence relation.

Definition 1.7. Two parametrized curves σ : I → Rn and σ̃ : Ĩ → Rn of
class Ck are equivalent with the same orientation if there exists a parameter change
h : Ĩ → I from σ̃ to σ with positive derivative everywhere; they are equivalent with
opposite orientation if there exists a parameter change h : Ĩ → I from σ̃ to σ
with negative derivative everywhere (note that the derivative of a diffeomorphism
between intervals cannot be zero in any point, so it is either positive everywhere or
negative everywhere). An oriented curve is then an equivalent class of parametrized
curves with the same orientation.

Example 1.17. If σ : I → Rn is a parametrized curve, then the parametrized
curve σ− : − I → Rn given by σ−(t) = σ(−t), where −I = {t ∈ R | −t ∈ I}, is
equivalent to σ but with the opposite orientation.

In general, working with equivalence classes is always a bit tricky; you have
to choose a representative element and to check that all obtained results do not
depend on that particular representative element. Nevertheless, there is a large
class of curves, the regular curves, for which it is possible to choose in a canonical
way a parametrization that represents the geometry of the curve particularly well:
the arc length parametrization. The existence of this canonical parametrization
permits an effective study of the geometry (and, in particular, of the differential
geometry) of curves, confirming a posteriori that this is the right definition.

In the next section we shall introduce this special parametrization.

1.2. Arc length

This is a course about differential geometry; so our basic idea is to study geo-
metric properties of curves (and surfaces) by using techniques borrowed from Math-
ematical Analysis, and in particular from Differential Calculus. Accordingly,we
shall always work with curves of class at least C1, in order to be able to compute
derivatives.

The derivative of a parametrization of a curve tells us the speed at which we
are describing the image of the curve. The class of curves for which the speed is
nowhere zero (so we always know the direction we are going) is, as we shall see, the
right class for differential geometry.

Definition 1.8. Let σ : I → Rn be a parametrized curve of class (at least) C1.
The vector σ′(t) is the tangent vector to the curve at the point σ(t). If t0 ∈ I is
such that σ′(t0) 6= O, then the line through σ(t0) and parallel to σ′(t0) is the affine
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Figure 2. A non-regular curve

tangent line to the curve at the point σ(t0). Finally, if σ′(t) 6= O for all t ∈ I we
shall say that σ is regular.

Remark 1.6. The notion of a tangent vector depends on the parametrization
we have chosen, while the affine tangent line (if any) and the fact of being regular

are properties of the curve. Indeed, let σ : I → Rn and σ̃ : Ĩ → Rn be two equivalent
parametrized curves of class C1, and h : Ĩ → I the parameter change. Then, by
computing σ̃ = σ ◦ h, we find

(1) σ̃′(t) = h′(t)σ′
(
h(t)

)
.

Since h′ is never zero, we see that the length of the tangent vector depends on our
particular parametrization, but its direction does not; so the affine tangent line
in σ̃(t) = σ

(
h(t)

)
determined by σ̃ is the same as that determined by σ. Moreover,

σ̃′ is never zero if and only if σ′ is never zero; so, being regular is a property of the
curve, rather than of a particular representative.

Example 1.18. Graphs, lines, circles, circular helices, and the curves in Ex-
amples 1.10 and 1.11 are regular curves.

Example 1.19. The curve σ : R→ R2 given by σ(t) = (t2, t3) is a non-regular
curve whose image cannot be the image of a regular curve; see Fig 2 and Exer-
cises 1.4 and 1.10.

As anticipated in the previous section, what makes the theory of curves espe-
cially simple to deal with is that every regular curve has a canonical parametrization
(unique up to its starting point; see Theorem 1.4), strongly related to the geometri-
cal properties common to all parametrizations of the curve. In particular, to study
the geometry of a regular curve, we often may confine ourselves to working with
the canonical parametrization.

This canonical parametrization basically consists in using as our parameter the
length of the curve. So let us start by defining what we mean by length of a curve.

Definition 1.9. Let I = [a, b] be an interval. A partition P of I is a (k + 1)-
tuple (t0, . . . , tk) ∈ [a, b]k+1 with a = t0 < t1 < · · · < tk = b. If P is partition of I,
we set

‖P‖ = max
1≤j≤k

|tj − tj−1| .
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Definition 1.10. Given a parametrized curve σ : [a, b]→ Rn and a partition P
of [a, b], denote by

L(σ,P) =

k∑
j=1

‖σ(tj)− σ(tj−1)‖

the length of the polygonal closed curve having vertices σ(t0), . . . , σ(tk). We shall
say that σ is rectifiable if the limit

L(σ) = lim
‖P‖→0

L(σ,P)

exists and is finite. This limit is the length of σ.

Theorem 1.3. Every parametrized curve σ : [a, b] → Rn of class C1 is rectifi-
able, and we have

L(σ) =

∫ b

a

‖σ′(t)‖ dt .

Proof. Since σ is of class C1, the integral is finite. So we have to prove that,
for each ε > 0 there exists a δ > 0 such that if P is a partition of [a, b] with ‖P‖ < δ
then

(2)

∣∣∣∣∣
∫ b

a

‖σ′(t)‖dt− L(σ,P)

∣∣∣∣∣ < ε .

We begin by remarking that, for each partition P = (t0, . . . , tk) of [a, b] and for
each j = 1, . . . , k, we have

‖σ(tj)− σ(tj−1)‖ =

∥∥∥∥∥
∫ tj

tj−1

σ′(t) dt

∥∥∥∥∥ ≤
∫ tj

tj−1

‖σ′(t)‖ dt ;

so summing over j we find

(3) L(σ,P) ≤
∫ b

a

‖σ′(t)‖dt ,

independently of the partition P.
Now, fix ε > 0; then the uniform continuity of σ′ over the compact interval [a, b]

provides us with a δ > 0 such that

(4) |t− s| < δ =⇒ ‖σ′(t)− σ′(s)‖ < ε

b− a
for all s, t ∈ [a, b]. Let P = (t0, . . . , tk) be a partition of [a, b] with ‖P‖ < δ. For
all j = 1, . . . , k and s ∈ [tj−1, tj ] we have

σ(tj)− σ(tj−1) =

∫ tj

tj−1

σ′(s) dt+

∫ tj

tj−1

(
σ′(t)− σ′(s)

)
dt

= (tj − tj−1)σ′(s) +

∫ tj

tj−1

(
σ′(t)− σ′(s)

)
dt .
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Hence,

‖σ(tj)− σ(tj−1)‖ ≥ (tj − tj−1)‖σ′(s)‖ −
∫ tj

tj−1

∥∥σ′(t)− σ′(s)∥∥dt

≥ (tj − tj−1)‖σ′(s)‖ − ε

b− a (tj − tj−1) ,

where the last step follows from the fact that s, t ∈ [tj−1, tj ] implies |t− s| < δ, so
we may apply (4). Dividing by tj − tj−1 we get

‖σ(tj)− σ(tj−1)‖
tj − tj−1

≥ ‖σ′(s)‖ − ε

b− a ;

then integrating with respect to s over [tj−1, tj ] it follows that

‖σ(tj)− σ(tj−1)‖ ≥
∫ tj

tj−1

‖σ′(s)‖ds− ε

b− a (tj − tj−1) .

Summing over j = 1, . . . , k we get

L(σ,P) ≥
∫ b

a

‖σ′(s)‖ ds− ε ,

which taken together with (3) gives (2). �

Corollary 1.1. Length is a geometric property of C1 curves, and it does not
depend on a particular parametrization. In other words, any two equivalent param-
etrized curves of class C1 (defined on a compact interval) have the same length.

Proof. Let σ : [a, b] → Rn and σ̃ : [ã, b̃] → Rn be equivalent parametrized

curves, and h : [ã, b̃]→ [a, b] the parameter change. Then (1) implies

L(σ̃) =

∫ b̃

ã

‖σ̃′(t)‖ dt =

∫ b̃

ã

∥∥σ′(h(t)
)∥∥ |h′(t)|dt =

∫ b

a

‖σ′(τ)‖ dτ = L(σ) ,

thanks to the classical theorem about change of variables in integrals. �

Remark 1.7. Note that the length of a curve does not depend only on its sup-
port, since a non-injective parametrization may describe some arc more than once.
For instance, the two curves in Example 1.7, restricted to [0, 2π], have different
lengths even though they have the same image.

The time has come for us to define the announced canonical parametrization:

Definition 1.11. Let σ : I → Rn be a curve of class Ck (with k ≥ 1). Having
fixed t0 ∈ I, the arc length of σ (measured starting from t0) is the function s : I → R
of class Ck given by

s(t) =

∫ t

t0

‖σ′(τ)‖ dτ .

We shall say that σ is parametrized by arc length if ‖σ′‖ ≡ 1. In other words, σ is
parametrized by arc length if and only if its arc length is equal to the parameter t
up to a translation, that is s(t) = t− t0.

A curve parametrized by arc length is clearly regular. The fundamental result
is that the converse implication is true too:
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Theorem 1.4. Every regular oriented curve admits a unique (up to a transla-
tion in the parameter) parametrization by arc length. More precisely, let σ : I → Rn
be a regular parametrized curve of class Ck. Having fixed t0 ∈ I, denote by s : I → R
the arc length of σ measured starting from t0. Then σ̃ = σ ◦ s−1 is (up to a trans-
lation in the parameter) the unique regular Ck curve parametrized by arc length
equivalent to σ and having the same orientation.

Proof. First of all, s′ = ‖σ′‖ is positive everywhere, so s : I → s(I) is a
monotonically increasing function of class Ck having inverse of class Ck between
the intervals I and Ĩ = s(I). So σ̃ = σ ◦ s−1 : Ĩ → Rn is a parametrized curve
equivalent to σ and having the same orientation. Furthermore,

σ̃′(t) =
σ′
(
s−1(t)

)∥∥σ′(s−1(t)
)∥∥ ,

so ‖σ̃′‖ ≡ 1, as required.
To prove uniqueness, let σ1 be another parametrized curve satisfying the hy-

potheses. Being equivalent to σ (and so to σ̃) with the same orientation, there exists
a parameter change h with positive derivative everywhere such that σ1 = σ̃ ◦ h.
As both σ̃ and σ1 are parametrized by arc length, (1) implies |h′| ≡ 1; but h′ > 0
everywhere, so necessarily h′ ≡ 1. This means that h(t) = t + c for some c ∈ R,
and thus σ1 is obtained from σ̃ by translating the parameter. �

So, every regular curve admits an essentially unique parametrization by arc
length. In some textbooks this parametrization is called the natural parametriza-
tion.

Remark 1.8. In what follows, we shall always use the letter s to denote the
arc-length parameter, and the letter t to denote an arbitrary parameter. Moreover,
the derivatives with respect to the arc-length parameter will be denoted by a dot
(̇), while the derivatives with respect to an arbitrary parameter by a prime (′). For
instance, we shall write σ̇ for dσ/ds, and σ′ for dσ/dt. The relation between σ̇ and
σ′ easily follows from the chain rule:

(5) σ′(t) =
dσ

dt
(t) =

dσ

ds

(
s(t)

)ds

dt
(t) = ‖σ′(t)‖ σ̇

(
s(t)

)
.

Analogously we have

σ̇(s) =
1∥∥σ′(s−1(s)

)∥∥ σ′(s−1(s)
)
,

where in last formula the letter s denotes both the parameter and the arc length
function. As you will see, using the same letter to represent both concepts will not
cause, once you get used to it, any confusion.

Example 1.20. Let σ : R → Rn be a line parametrized as in Example 1.6.
Then the arc length of σ starting from 0 is s(t) = ‖v1‖t, and thus s−1(s) = s/‖v1‖.
In particular, a parametrization of the line by arc length is σ̃(s) = v0 + sv1/‖v1‖.

Example 1.21. Let σ : [0, 2π] → R2 be the parametrization of the circle with
center (x0, y0) ∈ R2 and radius r > 0 given by σ(t) = (x0 + r cos t, y0 + r sin t).
Then the arc length of σ starting from 0 is s(t) = rt, so s−1(s) = s/r. In par-
ticular, a parametrization σ̃ : [0, 2πr] → R2 by arc length of the circle is given by
σ̃(s) =

(
x0 + r cos(s/r), y0 + r sin(s/r)

)
.
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Example 1.22. The circular helix σ : R → R3 with radius r > 0 and pitch
a ∈ R∗ described in Example 1.8 has ‖σ′‖ ≡

√
r2 + a2. So an arc length param-

etrization is

σ̃(s) =

(
r cos

s√
r2 + a2

, r sin
s√

r2 + a2
,

as√
r2 + a2

)
.

Example 1.23. The catenary is the graph of the hyperbolic cosine function;
so a parametrization is the curve σ : R→ R2 given by σ(t) = (t, cosh t). It is one of
the few curves for which we can explicitly compute the arc length parametrization
using elementary functions. Indeed, σ′(t) = (1, sinh t); so

s(t) =

∫ t

0

√
1 + sinh2 τ dτ =

∫ t

0

cosh τ dτ = sinh t

and
s−1(s) = arc sinh s = log

(
s+

√
1 + s2

)
.

Now, cosh
(
log
(
s+
√

1 + s2
))

=
√

1 + s2, and thus the parametrization of the cate-
nary by arc length is

σ̃(s) =
(

log
(
s+

√
1 + s2

)
,
√

1 + s2
)
.

Example 1.24. Let E be an ellipse having semiaxes a, b > 0, parametrized as
in Example 1.15, and assume b > a. Then

s(t) =

∫ t

0

√
a2 sin2 τ + b2 cos2 τ dτ = b

∫ t

0

√
1−

(
1− a2

b2

)
sin2 τ dτ

is an elliptic integral of the second kind, whose inverse is expressed using Jacobi
elliptic functions. So, to compute the arc-length parametrization of the ellipse we
have to resort to non-elementary functions.

Remark 1.9. Theorem 1.4 says that every regular curve can be parametrized
by arc length, at least in principle. In practice, finding the parametrization by arc
length of a particular curve might well be impossible: as we have seen in the previous
examples, in order to do so it is necessary to compute the inverse of a function given
by an integral. For this reason, from now on we shall use the parametrization by
arc length to introduce the geometric quantities (like curvature, for instance) we are
interested in, but we shall always explain how to compute those quantities starting
from an arbitrary parametrization too.

1.3. Curvature and torsion

In a sense, a straight line is a curve that never changes direction. More precisely,
the image of a regular curve is contained in a line if and only if the direction of its
tangent vector σ′ is constant (see Exercise 1.22). As a result, it is reasonable to
suppose that the variation of the direction of the tangent vector could tell us how
far a curve is from being a straight line. To get an effective way of measuring this
variation (and so the curve’s curvature), we shall use the tangent versor.

Definition 1.12. Let σ : I → Rn be a regular curve of class Ck. The tangent
versor (also called unit tangent vector) to σ is the map ~t : I → Rn of class Ck−1

given by

~t =
σ′

‖σ′‖ ;
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we shall also say that the versor ~t(t) is tangent to the curve σ at the point σ(t).

Remark 1.10. Equation (1) implies that the tangent vector only depends on
the oriented curve, and not on a particular parametrization we might have chosen.
In particular, if the curve σ is parametrized by arc length, then

~t = σ̇ =
dσ

ds
.

On the other hand, the tangent versor does depend on the orientation of the curve.
If ~t− is the tangent versor to the curve (introduced in Example 1.17) σ− having
opposite orientation, then

~t−(t) = −~t(−t) ,
that is the tangent versor changes sign when the orientation is reversed.

The variations in the direction of the tangent vector can be measured by the
variation of the tangent versor, that is, by the derivative of ~t.

Definition 1.13. Let σ : I → Rn be a regular curve of class Ck (with k ≥ 2)
parametrized by arc length. The curvature of σ is the function κ : I → R+ of class
Ck−2 given by

κ(s) = ‖~̇t(s)‖ = ‖σ̈(s)‖ .
Clearly, κ(s) is the curvature of σ at the point σ(s). We shall say that σ is biregular
if κ is everywhere nonzero. In this case the radius of curvature of σ at the point
σ(s) is r(s) = 1/κ(s).

Remark 1.11. If σ : I → Rn is an arbitrary regular parametrized curve, the
curvature κ(t) of σ at the point σ(t) is defined by reparametrizing the curve by
arc length. If σ1 = σ ◦ s−1 is a parametrization of σ by arc length, and κ1 is
the curvature of σ1, then we define κ : I → R+ by setting κ(t) = κ1

(
s(t)

)
, so

the curvature of σ at the point σ(t) is equal to the curvature of σ1 at the point
σ1

(
s(t)

)
= σ(t).

Example 1.25. A line parametrized as in Example 1.20 has a constant tangent
versor. So the curvature of a straight line is everywhere zero.

Example 1.26. Let σ : [0, 2πr] → R2 be the circle with center (x0, y0) ∈ R2

and radius r > 0, parametrized by arc length as in Example 1.21. Then

~t(s) = σ̇(s) =
(
− sin(s/r), cos(s/r)

)
and ~̇t(s) =

1

r

(
− cos(s/r),− sin(s/r)

)
,

so σ has constant curvature 1/r. This is the reason why the reciprocal of the
curvature is called radius of curvature.

Example 1.27. Let σ : R → R3 be the circular helix with radius r > 0 and
pitch a ∈ R∗, parametrized by arc length as in Example 1.22. Then,

~t(s) =

(
− r√

r2 + a2
sin

s√
r2 + a2

,
r√

r2 + a2
cos

s√
r2 + a2

,
a√

r2 + a2

)
and

~̇t(s) = − r

r2 + a2

(
cos

s√
r2 + a2

, sin
s√

r2 + a2
, 0

)
;

so the helix has constant curvature

κ ≡ r

r2 + a2
.
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Example 1.28. Let σ : R → R2 be the catenary, parametrized by arc length
as in Example 1.23. Then

~t(s) =

(
1√

1 + s2
,

s√
1 + s2

)
and

~̇t(s) =

(
− s

(1 + s2)3/2
,

1

(1 + s2)3/2

)
;

so the catenary has curvature

κ(s) =
1

1 + s2
.

Now, it stands to reason that the direction of the vector ~̇t should also contain
significant geometric information about the curve, since it gives the direction the

curve is following. Moreover, the vector ~̇t cannot be just any vector. Indeed, since
~t is a versor, we have

〈~t,~t〉 ≡ 1 ,

where 〈· , ·〉 is the canonical scalar product in Rn; hence, after taking the derivative,
we get

〈~̇t,~t〉 ≡ 0 .

In other words, ~̇t is orthogonal to ~t everywhere.

Definition 1.14. Let σ : I → Rn be a biregular curve of class Ck (with k ≥ 2)
parametrized by arc length. The normal versor (also called unit normal vector)
to σ is the map ~n : I → Rn of class Ck−2 given by

~n =
~̇t

‖~̇t‖
=
~̇t

κ
.

The plane through σ(s) and parallel to Span
(
~t(s), ~n(s)

)
is the osculating plane to

the curve at σ(s). The affine normal line of σ at the point σ(s) is the line through
σ(s) parallel to the normal versor ~n(s).

Before going on, we must show how to compute the curvature and the normal
versor without resorting to the arc-length, fulfilling the promise we made in Remark
1.9:

Proposition 1.3. Let σ : I → Rn be any regular parametrized curve. Then the
curvature κ : I → R+ of σ is given by

(6) κ =

√
‖σ′‖2‖σ′′‖2 − |〈σ′′, σ′〉|2

‖σ′‖3 .

In particular, σ is biregular if and only if σ′ and σ′′ are linearly independent every-
where; in this case,

(7) ~n =
1√

‖σ′′‖2 − |〈σ′′,σ′〉|2‖σ′‖2

(
σ′′ − 〈σ

′′, σ′〉
‖σ′‖2 σ′

)
.
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Proof. Let s : I → R be the arc length of σ measured starting from an arbi-
trary point. Equation (5) gives

~t
(
s(t)

)
=

σ′(t)

‖σ′(t)‖ ;

since

d

dt
~t
(
s(t)

)
=

d~t

ds

(
s(t)

) ds

dt
(t) = ‖σ′(t)‖~̇t

(
s(t)

)
,

we find

~̇t
(
s(t)

)
=

1

‖σ′(t)‖
d

dt

(
σ′(t)

‖σ′(t)‖

)
=

1

‖σ′(t)‖2
(
σ′′(t)− 〈σ

′′(t), σ′(t)〉
‖σ′(t)‖2 σ′(t)

)
;(8)

note that ~̇t
(
s(t)

)
is a multiple of the component of σ′′(t) orthogonal to σ′(t). Finally,

κ(t) =
∥∥~̇t(s(t))∥∥ =

1

‖σ′(t)‖2

√
‖σ′′(t)‖2 − |〈σ

′′(t), σ′(t)〉|2
‖σ′(t)‖2 ,

and the proof is complete, as the last claim follows from the Cauchy-Schwarz in-
equality, and (7) follows from (8). �

Let us see how to apply this result in several examples.

Example 1.29. Let σ : R → R2 be the ellipse having semiaxes a, b > 0, with
the parametrization described in Example 1.15. Then σ′(t) = (−a sin t, b cos t), and
hence σ′′(t) = (−a cos t,−b sin t). Therefore

~t(t) =
σ′(t)

‖σ′(t)‖ =
1√

a2 sin2 t+ b2 cos2 t
(−a sin t, b cos t)

and the curvature of the ellipse is given by

κ(t) =
ab

(a2 sin2 t+ b2 cos2 t)3/2
.

Example 1.30. The normal versor of a circle with radius r > 0 is

~n(s) =
(
− cos(s/r),− sin(s/r)

)
;

that of a circular helix with radius r > 0 and pitch a ∈ R∗ is

~n(s) =

(
− cos

s√
r2 + a2

,− sin
s√

r2 + a2
, 0

)
;

that of the catenary is

~n(s) =

(
− s√

1 + s2
,

1√
1 + s2

)
;

and that of the ellipse with semiaxes a, b > 0 is

~n(t) =
1√

a2 sin2 t+ b2 cos2 t
(−b cos t,−a sin t) .



16 1. LOCAL THEORY OF CURVES

Example 1.31. Let σ : I → Rn, given by σ(t) =
(
t, f(t)

)
, be the graph of a

map f : I → Rn−1 of class (at least) C2. Then

~t =
1√

1 + ‖f ′‖2
(1, f ′) ,

~n(t) =
1√

‖f ′′‖2 − |〈f ′′, f ′〉|2/(1 + ‖f ′‖2)

(
− 〈f

′′, f ′〉
1 + ‖f ′‖2 , f

′′ − 〈f ′′, f ′〉
1 + ‖f ′‖2 f

′
)
.

and

κ =

√
(1 + ‖f ′‖2)‖f ′′‖2 − |〈f ′′, f ′〉|2

(1 + ‖f ′‖2)3/2
.

In particular, σ is biregular if and only if f ′′ is never zero (why?).

Remark 1.12. To define the normal versor we had to assume the biregularity
of the curve. However, if the curve is plane, to define a normal versor regularity is
enough.

Indeed, if σ : I → R2 is a plane curve of class Ck parametrized by arc length, for
all s ∈ I there exists a unique versor ~̃n(s) that is orthogonal to ~t(s) and such that

the pair {~t(s), ~̃n(s)} has the same orientation as the canonical basis. In coordinates,

~t(s) = (a1, a2) =⇒ ~̃n(s) = (−a2, a1) ;

in particular, the map ~̃n : I → R2 is of class Ck−1, just like ~t. Moreover, since
~̇t(s) is orthogonal to ~t(s), it has to be a multiple of ~̃n(s); so there exists a function
κ̃ : I → R of class Ck−2 such that we have

(9) ~̇t = κ̃~̃n .

Definition 1.15. If σ : I → R2 is a regular plane curve of class Ck (with

k ≥ 2) parametrized by arc length, the map ~̃n : I → R2 of class Ck−1 just defined
is the oriented normal versor of σ, while the function κ̃ : I → R of class Ck−2 is
the oriented curvature of σ.

Remark 1.13. Since, by construction, we have det(~t, ~̃n) ≡ 1, the oriented
curvature of a plane curve is given by the formula

(10) κ̃ = det(~t, ~̇t) .

To put it simply, this means that, if κ̃ > 0, then the curve is bending in a counter-
clockwise direction, while if κ̃ < 0 then the curve is bending in a clockwise direction.
Finally, if σ : I → R2 is an arbitrary parametrized plane curve, then the oriented
curvature of σ in the point σ(t) is given by (see Problem 1.1)

(11) κ̃(t) =
1

‖σ′(t)‖3 det
(
σ′(t), σ′′(t)

)
.

Remark 1.14. The oriented curvature κ̃ of a plane curve is related to the usual
curvature κ by the identity κ = |κ̃|. In particular, the normal versor introduced

in Definition 1.14 coincides with the oriented normal versor ~̃n when the oriented
curvature is positive, and with its opposite when the oriented curvature is negative.

Example 1.32. Example 1.26 show that the oriented curvature of the circle
with center (x0, y0) ∈ R2 and radius r > 0, parametrized by arc length as in Ex-
ample 1.21, is constant, equal to 1/r. On the other hand, let σ = (σ1, σ2) : I → R2

be a regular curve parametrized by arc length, with constant oriented curvature
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equal to 1/r 6= 0. Then the coordinates of σ satisfy the linear system of ordinary
differential equations {

σ̈1 = − 1
r σ̇2 ,

σ̈2 = 1
r σ̇1 .

Keeping in mind that σ̇2
1 + σ̇2

2 ≡ 1, we find that there exists a s0 ∈ R such that

σ̇(s) =

(
− sin

s+ s0

r
, cos

s+ s0

r

)
,

so the support of σ is contained (why?) in a circle with radius |r|. In other words,
circles are characterized by having a constant nonzero oriented curvature.

As we shall shortly see (and as the previous example suggests), the oriented
curvature completely determines a plane curve in a very precise sense: two plane
curves parametrized by arc length having the same oriented curvature only differ
by a rigid plane motion (Theorem 1.6 and Exercise 1.48).

Space curves, on the other hand, are not completely determined by their cur-
vature. This is to be expected: in space, a curve may bend and also twist, that is
leave any given plane. And, if n > 3, a curve in Rn may hypertwist in even more
dimensions. For the sake of clarity, in the rest of this section we shall (almost)
uniquely consider curves in the space R3.

If the support of a regular curve is contained in a plane, it is clear (why? see
the proof of Proposition 1.4) that the osculating plane of the curve is constant.
This suggests that it is possible to measure how far a space curve is from being
plane by studying the variation of its osculating plane. Since a plane (through the
origin of R3) is completely determined by the direction orthogonal to it, we are led
to the following

Definition 1.16. Let σ : I → R3 be a biregular curve of class Ck. The binormal

versor (also called unit binormal vector) to the curve is the map ~b : I → R3 of class

Ck−2 given by ~b = ~t ∧ ~n, where ∧ denotes the vector product in R3. The affine
binormal line of σ at the point σ(s) is the line through σ(s) parallel to the binormal

versor ~b(s).

Finally, the triple {~t, ~n,~b} of R3-valued functions is the Frenet frame of the

curve. Sometimes, the maps ~t, ~n, ~b : I → R3 are also called spherical indicatrices
because their image is contained in the unit sphere of R3.

So we have associated to each point σ(s) of a biregular space curve σ an or-

thonormal basis {~t(s), ~n(s),~b(s)} of R3 having the same orientation as the canonical
basis, and varying along the curve (see Fig. 3).

Remark 1.15. The Frenet frame depends on the orientation of the curve.

Indeed, if we denote by {~t−, ~n−,~b−} the Frenet frame associated with the curve
σ−(s) = σ(−s) equivalent to σ having opposite orientation, we have

~t−(s) = −~t(−s) , ~n−(s) = ~n(−s) , ~b−(s) = −~b(−s) .
On the other hand, since it was defined using a parametrization by arc length,
the Frenet frame only depends on the oriented curve, and not on the specific
parametrization chosen to compute it.
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Figure 3. The Frenet frame

Example 1.33. Let σ : R → R3 be the circular helix with radius r > 0 and
pitch a ∈ R∗, parametrized by arc length as in Example 1.22. Then

~b(s) =

(
a√

r2 + a2
sin

s√
r2 + a2

,− a√
r2 + a2

cos
s√

r2 + a2
,

r√
r2 + a2

)
.

Example 1.34. If σ : I → R3 is the graph of a map f = (f1, f2) : I → R2 such
that f ′′ is nowhere zero, then

~b =
1√

‖f ′′‖2 + |det(f ′, f ′′)|2
(
det(f ′, f ′′),−f ′′2 , f ′′1

)
.

Example 1.35. If we identify R2 with the plane {z = 0} in R3, we may consider
every plane curve as a space curve. With this convention, it is straightforward
(why?) to see that the binormal versor of a biregular curve σ : I → R2 is everywhere
equal to (0, 0, 1) if the oriented curvature of σ is positive, and everywhere equal to
(0, 0,−1) if the oriented curvature of σ is negative.

Remark 1.16. Keeping in mind Proposition 1.3, we immediately find that the
binormal versor of an arbitrary biregular parametrized curve σ : I → R3 is given by

(12) ~b =
σ′ ∧ σ′′
‖σ′ ∧ σ′′‖ .

In particular, we obtain another formula for the computation of the normal versor
of curves in R3:

~n = ~b ∧ ~t =
(σ′ ∧ σ′′) ∧ σ′
‖σ′ ∧ σ′′‖ ‖σ′‖ .

Moreover, formula (6) for the computation of the curvature becomes

(13) κ =
‖σ′ ∧ σ′′‖
‖σ′‖3 .

The next proposition confirms the correctness of our idea that the variation of
the binormal versor measures how far a curve is from being plane:

Proposition 1.4. Let σ : I → R3 be a biregular curve of class Ck (with k ≥ 2).
Then the image of σ is contained in a plane if and only if the binormal versor is
constant.
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Proof. Without loss of generality, we may assume that the curve σ is param-
etrized by arc length.

If the image of σ is contained in a plane, then there is a plane H ⊂ R3 containing
the origin such that σ(s)−σ(s′) ∈ H for all s, s′ ∈ I. Dividing by s− s′ and taking
the limit as s′ → s we immediately find that ~t(s) ∈ H for all s ∈ I. In the same

way, it can be shown that ~̇t(s) ∈ H for all s ∈ I, so ~n(s) ∈ H for all s ∈ I.

Hence ~b(s) must always be one of the two versors orthogonal to H; since it changes
continuously, it is constant.

On the other hand, assume the binormal versor is a constant vector ~b0; we
want to prove that the support of σ is contained in a plane. Now, a plane is
determined by one of its points and an orthogonal versor: a point p ∈ R3 is in the
plane passing through p0 ∈ R3 and orthogonal to the vector v ∈ R3 if and only if
〈p − p0, v〉 = 0. Take s0 ∈ I; we want to show that the support of σ is contained

in the plane through σ(s0) and orthogonal to ~b0. This is the same as showing that

〈σ(s),~b0〉 ≡ 〈σ(s0),~b0〉, or that the function s 7→ 〈σ(s),~b0〉 is constant. And indeed
we have

d

ds
〈σ,~b0〉 = 〈~t,~b0〉 ≡ 0 ,

as ~t is always orthogonal to the binormal versor, so the support of σ really is

contained in the plane of equation 〈p− σ(s0),~b0〉 = 0. �

This result suggests that the derivative of the binormal versor might measure

how far a biregular curve is from being plane. Now, ~b is a versor; so, taking the

derivative of 〈~b,~b〉 ≡ 1 we get 〈~̇b,~b〉 ≡ 0, that is ~̇b is always orthogonal to ~b. On the
other hand,

~̇b = ~̇t ∧ ~n+ ~t ∧ ~̇n = ~t ∧ ~̇n ,
so ~̇b is perpendicular to ~t too; hence, ~̇b has to be a multiple of ~n.

Definition 1.17. Let σ : I → R3 be a biregular curve of class Ck (with k ≥ 3)
parametrized by arc length. The torsion of σ is the function τ : I → R of class

Ck−3 such that ~̇b = −τ~n. (Warning : In some texts the torsion is defined to be the
opposite of the function we have chosen.)

Remark 1.17. Proposition 1.4 may then be rephrased by saying that the image
of a biregular curve σ is contained in a plane if and only if the torsion of σ is
everywhere zero.

Remark 1.18. Curvature and torsion do not depend on the orientation of the
curve. More precisely, if σ : I → R3 is a biregular curve parametrized by arc length,
and σ− is the usual curve parametrized by arc length equivalent to σ but with
the opposite orientation given by σ−(s) = σ(−s), then the curvature κ− and the
torsion τ− of σ− are such that

κ−(s) = κ(−s) and τ−(s) = τ(−s) .
Remark 1.19. On the other hand, the oriented curvature and the oriented

normal versor of a plane curve depend on the orientation of the curve. Indeed, with
the notation of the previous remark applied to a plane curve σ, we find

~t−(s) = −~t(−s) , κ̃−(s) = −κ̃(−s) , ~̃n−(s) = −~̃n(−s) .
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Remark 1.20. To find the torsion of a biregular curve σ : I → R3 with an

arbitrary parametrization, first of all note that τ = −〈~̇b, ~n〉. Taking the derivative
of (12), we get

~̇b =
d~b

ds
=

dt

ds

d~b

dt
=

1

‖σ′‖

[
σ′ ∧ σ′′′
‖σ′ ∧ σ′′‖ −

〈σ′ ∧ σ′′, σ′ ∧ σ′′′〉
‖σ′ ∧ σ′′‖3 σ′ ∧ σ′′

]
.

Therefore, keeping in mind Equation (7), we obtain

τ = −〈σ
′ ∧ σ′′′, σ′′〉
‖σ′ ∧ σ′′‖2 =

〈σ′ ∧ σ′′, σ′′′〉
‖σ′ ∧ σ′′‖2 .

Example 1.36. If σ : I → R3 is the usual parametrization σ(t) =
(
t, f(t)

)
of

the graph of a function f : I → R2 with f ′′ nowhere zero, then

τ =
det(f ′′, f ′′′)

‖f ′′‖2 + |det(f ′, f ′′)|2 .

Example 1.37. Let σ : R→ R3 be the circular helix with radius r > 0 and pitch
a ∈ R∗, parametrized by arc length as in Example 1.22. Then, taking the derivative
of the binormal versor found in Example 1.33 and keeping in mind Example 1.30,
we find

τ(s) ≡ a

r2 + a2
.

Thus both the curvature and the torsion of the circular helix are constant.

We have computed the derivative of the tangent versor and of the binormal
versor; for the sake of completeness, let us compute the derivative of the normal
versor too. We get

~̇n = ~̇b ∧ ~t+~b ∧ ~̇t = −τ~n ∧ ~t+~b ∧ κ~n = −κ~t+ τ~b .

Definition 1.18. Let σ : I → R3 be a biregular space curve. The three equa-
tions

(14)


~̇t = κ~n ,

~̇n = −κ~t+ τ~b ,

~̇b = −τ~n ,

are the Frenet-Serret formulas of σ.

Remark 1.21. There are Frenet-Serret formulas for plane curves too. Since
˙̃
~n is, for the usual reasons, orthogonal to ~̃n, it has to be a multiple of ~t. Taking

the derivative of 〈~t, ~̃n〉 ≡ 0, we find 〈~t, ˙̃
~n〉 = −κ̃. So the Frenet-Serret formulas for

plane curves are {
~̇t = κ̃~̃n ,
˙̃
~n = −κ̃~t ,

The basic idea of the local theory of space curves is that the curvature and the
torsion completely determine a curve (compare Example 1.37 and Problem 1.7).
To convey in precise terms what we mean, we need a definition.
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Definition 1.19. A rigid motion of Rn is an affine map ρ : Rn → Rn of the
form ρ(x) = Ax+ b, where b ∈ Rn and

A ∈ SO(n) = {A ∈ GL(n,R) | ATA = I and detA = 1} .

In particular, when n = 3 every rigid motion is a rotation about the origin followed
by a translation.

If a curve is obtained from another through a rigid motion, both curves have the
same curvature and torsion (Exercise 1.26); conversely, the fundamental theorem
of the local theory of curves states that any two curves with equal curvature and
torsion can always be obtained from one another through a rigid motion.

Frenet-Serret formulas are exactly the tool that will enable us to prove this
result, using the classical Analysis theorem about the existence and uniqueness of
the solutions of a linear system of ordinary differential equations (see [5, p. 162]):

Theorem 1.5. Given an interval I ⊆ R, a point t0 ∈ I, a vector u0 ∈ Rn, and
two functions f : I → Rn and A : I → Mn,n(R) of class Ck, with k ∈ N∗ ∪ {∞},
where Mp,q(R) denotes the space of p×q real matrices, there exists a unique solution
u : I → Rn of class Ck+1 to the Cauchy problem

{
u′ = Au+ f ,

u(t0) = u0 .

In particular, the solution of the Cauchy problem for linear systems of ordinary
differential equations exists over the whole domain of definition of the coefficients.

This is what we need to prove the fundamental theorem of the local theory of
curves:

Theorem 1.6 (Fundamental theorem of the local theory of curves). Given two
functions κ : I → R+ and τ : I → R, with κ always positive and of class Ck+1 and
τ of class Ck (with k ∈ N∗ ∪ {∞}), there exists a unique (up to a rigid motion)
biregular curve σ : I → R3 of class Ck+3 parametrized by arc length with curvature
κ and torsion τ .

Proof. We prove existence first. Frenet-Serret formulas (14) form a linear
system of ordinary differential equations in 9 unknowns (the components of ~t, ~n,

and ~b); so we can apply Theorem 1.5.

Fix a point s0 ∈ I and an orthonormal basis {~t0, ~n0,~b0} with the same ori-
entation as the canonical basis. Theorem 1.5 provides us with a unique triple of

functions ~t, ~n, ~b : I → R3, with ~t of class Ck+2 and ~n and ~b of class Ck+1, satisfying

(14) and such that ~t(s0) = ~t0, ~n(s0) = ~n0, and ~b(s0) = ~b0.

We want to prove that the triple {~t, ~n,~b} we have just found is the Frenet
frame of some curve. We show first that being an orthonormal basis in s0 forces it

to be so in every point. From (14) we deduce that the functions 〈~t,~t〉, 〈~t, ~n〉, 〈~t,~b〉,
〈~n, ~n〉, 〈~n,~b〉, and 〈~b,~b〉 satisfy the following system of six linear ordinary differential
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equations in 6 unknowns

d
ds 〈~t,~t〉 = 2κ〈~t, ~n〉 ,
d
ds 〈~t, ~n〉 = −κ〈~t,~t〉+ τ〈~t,~b〉+ κ〈~n, ~n〉 ,
d
ds 〈~t,~b〉 = −τ〈~t, ~n〉+ κ〈~n,~b〉 ,
d
ds 〈~n, ~n〉 = −2κ〈~t, ~n〉+ 2τ〈~n,~b〉 ,
d
ds 〈~n,~b〉 = −κ〈~t,~b〉 − τ〈~n, ~n〉+ τ〈~b,~b〉 ,
d
ds 〈~b,~b〉 = −2τ〈~n,~b〉 ,

with initial conditions

〈~t,~t〉(s0) = 1 , 〈~t, ~n〉(s0) = 0 , 〈~t,~b〉(s0) = 0 ,

〈~n, ~n〉(s0) = 1 , 〈~n,~b〉(s0) = 0 , 〈~b,~b〉(s0) = 1 .

But it is straightforward to verify that

(15) 〈~t,~t〉 ≡ 〈~n, ~n〉 ≡ 〈~b,~b〉 ≡ 1 , 〈~t, ~n〉 ≡ 〈~t,~b〉 ≡ 〈~n,~b〉 ≡ 0

is a solution of the same system of differential equations, satisfying the same initial

conditions in s0. So the functions ~t, ~n and ~b have to satisfy equalities (15), and

the triple {~t(s), ~n(s),~b(s)} is orthonormal for all s ∈ I. Moreover, it has the same

orientation of the canonical basis of R3 everywhere: indeed, 〈~t∧~n,~b〉 is a continuous
function on I with values in {+1,−1}, whose value is +1 in s0; hence, necessarily,

〈~t∧~n,~b〉 ≡ +1, which implies (why?) that {~t(s), ~n(s),~b(s)} has the same orientation
as the canonical basis everywhere.

Finally, define the curve σ : I → R3 by setting

σ(s) =

∫ s

s0

~t(t) dt .

The curve σ is of class Ck+3 with derivative ~t(s), so it is regular, parametrized by
arc length, and with tangent versor ~t. Since the equations (14) give σ̈ = κ~n with
κ > 0 everywhere, we deduce that κ is the curvature and ~n the normal versor of σ

(in particular, σ is biregular). It follows that ~b is the binormal versor and, thanks
to (14) once more, that τ is the torsion of σ, as required.

Let us now prove uniqueness. Let σ1 : I → R3 be another biregular curve of
class Ck+3, parametrized by arc length, with curvature κ and torsion τ . Fix s0 ∈ I;
up to a rigid motion, we may assume that σ(s0) = σ1(s0), and that σ and σ1 have
the same Frenet frame at s0. By the uniqueness of the solution of (14), it follows
that σ and σ1 have the same Frenet frame at all points of I; in particular, σ̇ ≡ σ̇1.
But this implies

σ(s) = σ(s0) +

∫ s

s0

σ̇(t) dt = σ1(s0) +

∫ s

s0

σ̇1(t) dt = σ1(s) ,

and σ1 ≡ σ. �

Therefore curvature and torsion are all we need to completely describe a curve
in space. For this reason, curvature and torsion are sometimes called intrinsic or
natural equations of the curve.
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Remark 1.22. Exactly in the same way (Exercise 1.48) it is possible to prove
the following result: Given a function κ̃ : I → R of class Ck, with k ∈ N∗ ∪ {∞},
there exists a unique (up to a rigid motion in the plane) regular curve σ : I → R2

of class Ck+2 parametrized by arc length having oriented curvature κ̃.
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Guided problems

For convenience, we repeat here the Frenet-Serret formulas, and the formulas
(given in Remarks 1.16 and 1.20, and useful to solve the exercises) for the computa-
tion of curvature, torsion and Frenet frame of an arbitrarily parametrized biregular
space curve:

(15)

~t =
σ′

‖σ′‖ ,
~b =

σ′ ∧ σ′′
‖σ′ ∧ σ′′‖ , ~n =

(σ′ ∧ σ′′) ∧ σ′
‖σ′ ∧ σ′′‖ ‖σ′‖ ,

κ =
‖σ′ ∧ σ′′‖
‖σ′‖3 , τ =

〈σ′ ∧ σ′′, σ′′′〉
‖σ′ ∧ σ′′‖2 ;


~̇t = κ~n ,

~̇n = −κ~t+ τ~b ,

~̇b = −τ~n .

Problem 1.1. Let σ : I → R2 be a biregular plane curve, parametrized by an
arbitrary parameter t. Show that the oriented curvature of σ is given by

κ̃ =
1

‖σ′‖3 det(σ′, σ′′) =
x′y′′ − x′′y′(

(x′)2 + (y′)2
)3/2 ,

where x, y : I → R are defined by σ(t) =
(
x(t), y(t)

)
.

Solution. By formula (10), the oriented curvature is given by κ̃ = det(~t, ~̇t).
To complete the proof, it is sufficient to substitute ~t = σ′/||σ′|| and

~̇t
(
s(t)

)
=

1

‖σ′(t)‖
d

dt

(
σ′(t)

‖σ′(t)‖

)
=

1

‖σ′(t)‖2
(
σ′′(t)− 〈σ

′′(t), σ′(t)〉
‖σ′(t)‖2 σ′(t)

)
in (10). Since the determinant is linear and alternating with respect to columns,
we get κ̃ = det(σ′, σ′′)/‖σ′(t)‖3, as desired. �

Problem 1.2. Let σ : I → Rn be a regular curve of class C2 parametrized
by arc length. Denote by θ(ε) the angle between the versors ~t(s0) and ~t(s0 + ε),
tangent to σ respectively in σ(s0) and in a nearby point σ(s0 + ε), for ε > 0 small.
Show that the curvature κ(s0) of σ in σ(s0) satisfies the equality

κ(s0) = lim
ε→0

∣∣∣∣θ(ε)ε
∣∣∣∣ .

Deduce that the curvature κ measures the rate of variation of the direction of the
tangent line, with respect to the arc length.

Solution. Consider the versors ~t(s0) and ~t(s0+ε), having as their initial point
the origin O; the triangle they determine is isosceles, and the length of the third
side is given by ‖~t(s0 +ε)−~t(s0)‖. The Taylor expansion of the sine function yields

‖~t(s0 + ε)− ~t(s0)‖ = 2
∣∣sin(θ(ε)/2)∣∣ =

∣∣θ(ε) + o
(
θ(ε)

)∣∣ .
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Figure 4. The tractrix

Keeping in mind the definition of curvature, we conclude that

κ(s0) = ‖~̇t(s0)‖ = lim
ε→0

∥∥∥∥~t(s0 + ε)− ~t(s0)

ε

∥∥∥∥
= lim

ε→0

∣∣∣∣∣θ(ε) + o
(
θ(ε)

)
ε

∣∣∣∣∣ .
As limε→0 θ(ε) = 0, the assertion follows. �

Problem 1.3. The tractrix. Let σ : (0, π) → R2 be the plane curve defined
by

σ(t) =

(
sin t, cos t+ log tan

t

2

)
;

the image of σ is called tractrix (Fig. 4). [Note: This curve will be used in later
chapters to define surfaces with important properties; see Example 3.37.]

(i) Prove that σ is a parametrization of class C∞, regular everywhere except
in t = π/2.

(ii) Check that the length of the segment of the tangent line to the tractrix
from the point of tangency to the y-axis is always 1.

(iii) Determine the arc length of σ starting from t0 = π/2.
(iv) Compute the curvature of σ where it is defined.

Solution. (i) Since tan(t/2) > 0 for all t ∈ (0, π), the curve σ is of class C∞.
Moreover,

σ′(t) =

(
cos t,

cos2 t

sin t

)
and ‖σ′(t)‖ =

| cos t|
sin t

,

so σ′(t) is zero only for t = π/2, as desired.

(ii) If t0 6= π/2, the affine tangent line η : R → R2 to σ at the point σ(t0) is
given by

η(x) = σ(t0) + xσ′(t0) =

(
sin t0 + x cos t0, cos t0 + log tan

t0
2

+ x
cos2 t0
sin t0

)
.

The tangent line intersects the y-axis in the point where the first coordinate of η is
zero, that is, for x = − tan t0. So the length we are looking for is

‖η(− tan t0)− η(0)‖ = ‖(− sin t0,− cos t0)‖ = 1 ,

as stated.
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In a sense, this result is true for t0 = π/2 too. Indeed, even if the tangent
vector to σ tends to O for t→ π/2, the tangent line to σ at σ(t) tends to the x-axis
for t→ π/2, since

lim
t→π/2−

σ′(t)

‖σ′(t)‖ = (1, 0) = −(−1, 0) = − lim
t→π/2+

σ′(t)

‖σ′(t)‖ .

So, if we consider the x-axis as the tangent line to the support of the tractrix at
the point σ(π/2) = (1, 0), in this case too the segment of the tangent line from the
point of the curve to the y-axis has length 1.

(iii) If t > π/2 we have

s(t) =

∫ t

π/2

‖σ′(τ)‖ dτ = −
∫ t

π/2

cos τ

sin τ
dτ = − log sin t .

Analogously, if t < π/2 we have

s(t) =

∫ t

π/2

‖σ′(τ)‖ dτ = −
∫ π/2

t

cos τ

sin τ
dτ = log sin t .

In particular,

s−1(s) =

{
π − arcsin e−s ∈ [π/2, π) if s ∈ [0,+∞) ,

arcsin es ∈ (0, π/2] if s ∈ (−∞, 0] ,

and using the formula tan x
2 = sin x

1+cos x we see that the reparametrization of σ by
arc length is given by

σ
(
s−1(s)

)
=

{(
e−s,−s−

√
1− e−2s − log

(
1−
√

1− e−2s
))

if s > 0 ,(
es, s+

√
1− e2s − log

(
1 +
√

1− e2s
))

if s < 0 .

(iv) Using the reparametrization σ1 = σ ◦ s−1 of σ by arc length we have just
computed, we find

σ̇1(s) =



(
−e−s,−1− e−2s −

√
1− e−2s

1−
√

1− e−2s

)
if s > 0 ,(

es,
1− e2s +

√
1− e2s

1 +
√

1− e2s

)
if s < 0 ,

and

σ̈1(s) =


(

e−s,
e−2s

√
1− e−2s

)
if s > 0 ,(

es,− e2s

√
1− e2s

)
if s < 0 .

So the curvature κ1 of σ1 for s 6= 0 is given by

κ(s) = ‖σ̈(s)‖ =
1√

e2|s| − 1
,

and (keeping in mind Remark 1.11) the curvature κ of σ for t 6= π/2 is

κ(t) = κ1

(
s(t)

)
= | tan t| .

As an alternative, we could have computed the curvature of σ by using the formula
for curves with an arbitrary parametrization (see next problem and Problem 1.1).

�
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Figure 5. Logarithmic spiral

Problem 1.4. Logarithmic spiral. Fix two real numbers a > 0 and b < 0.
The logarithmic spiral (Fig. 5) is the plane curve σ : R→ R2 given by

σ(t) = (aebt cos t, aebt sin t) .

(i) Show that the support of the spiral satisfies the equation r = aebθ, ex-
pressed in the polar coordinates (r, θ).

(ii) Show that σ(t) winds around the origin O tending to it as t→∞.
(iii) Determine the arc length of σ, starting from t = 0. Find the arc length

in the case a = 1/2 and b = −1.
(iv) Determine the curvature and the torsion of σ, and remark that the cur-

vature is never zero.

Solution. (i) We have r2 = x2 + y2 = a2e2bt(cos2 t+ sin2 t) = a2e2bt, and the
assertion follows because r is always positive.

(ii) First of all, by (i) we have ‖σ(t)‖ = aebt, and thus σ(t) → O as t → ∞,
because b < 0.

Moreover, t coincides with the argument θ of σ(t) up to a multiple of 2π; so
the argument of σ(t) is periodic of period 2π and assumes all possible values, that
is σ winds around the origin.

(iii) Note that the parametrization of σ is of class C∞. Differentiating, we find

σ′(t) = aebt(b cos t− sin t, b sin t+ cos t)

and so

‖σ′(t)‖ = aebt
√
b2 + 1 .

We deduce from this that the arc length of σ starting from t = 0 is given by:

s(t) =

∫ t

0

‖σ′(τ)‖ dτ = a
√
b2 + 1

∫ t

0

ebτ dτ = a
√
b2 + 1

[
ebt − 1

b

]
.

In the case a = 1/2, b = −1, the arc length is s(t) = (1− e−t)/
√

2.
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(iv) By applying the usual formulas we find

κ(t) =
‖σ′ ∧ σ′′‖
‖σ′‖3

=
−(b2 − 1) sin2 t+ 2b2 cos2 t− (b2 − 1) cos2 t+ 2b2 sin2 t

a ebt (b2 + 1)3/2

=
2b2 − (b2 − 1)

a ebt (b2 + 1)3/2
=

b2 + 1

a ebt (b2 + 1)3/2
=

1

a ebt (b2 + 1)1/2
.

In particular, the curvature is never zero, and the curve is biregular.
Finally, since the curve σ is plane and biregular, its torsion is defined and is

zero everywhere. �

Problem 1.5. Twisted cubic. Determine the curvature, the torsion, and the
Frenet frame of the curve σ : R→ R3 defined by σ(t) = (t, t2, t3).

Solution. Differentiating the expression of σ we find

σ′(t) = (1, 2t, 3t2) , σ′′(t) = (0, 2, 6t) and σ′′′(t) = (0, 0, 6) .

In particular, σ′ is nowhere zero; thus σ is regular and

~t(t) =
1√

1 + 4t2 + 9t4
(1, 2t, 3t2) .

Next,
σ′(t) ∧ σ′′(t) = (6t2,−6t, 2)

is never zero, so σ′ and σ′′ are always linearly independent, and σ is biregular.
Using the formulas recalled at the beginning of this section we get

~b(t) =
σ′(t) ∧ σ′′(t)
‖σ′(t) ∧ σ′′(t)‖ =

1

2
√

1 + 9t2 + 9t4
(6t2,−6t, 2) ,

~n(t) = ~b(t) ∧ ~t(t) =
(−9t3 − 2t, 1− 9t4, 6t3 + 3t)√
(1 + 4t2 + 9t4)(1 + 9t2 + 9t4)

,

κ(t) =
‖σ′(t) ∧ σ′′(t)‖
‖σ′(t)‖3 =

2
√

1 + 9t2 + 9t4

(1 + 4t2 + 9t4)3/2
,

and

τ(t) =

〈
~b(t),

σ′′′(t)

‖σ′(t) ∧ σ′′(t)‖

〉
=

3

1 + 9t2 + 9t4
.

�

Problem 1.6. Prove that the curve σ : (0,+∞)→ R3 defined by

σ(t) =

(
t,

1 + t

t
,

1− t2
t

)
is contained in a plane.

Solution. By noting that

σ′(t) =

(
1,− 1

t2
,− 1

t2
− 1

)
and σ′′(t) =

(
0,

2

t3
,

2

t3

)
,

we find that the vector product

σ′(t) ∧ σ′′(t) =
2

t3
(1,−1, 1)
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is nowhere zero, so the curvature κ = ‖σ′ ∧ σ′′‖/‖σ′‖3 is nowhere zero. By Re-
mark 1.17, we may conclude that σ is a plane curve if and only if the torsion
τ = 〈σ′ ∧σ′′, σ′′′〉/‖σ′ ∧σ′′‖2 is zero everywhere, that is, if and only if 〈σ′ ∧σ′′, σ′′′〉
is zero everywhere. But

〈σ′ ∧ σ′′, σ′′′〉 = det

1 − 1
t2 − 1

t2 − 1

0 2
t3

2
t3

0 − 6
t4 − 6

t4

 ≡ 0 ,

and the assertion follows. �

Problem 1.7. Let σ : I → R3 be a biregular curve parametrized by arc length,
having constant curvature κ0 > 0 and constant torsion τ0 ∈ R. Prove that, up to
rotations and translations of R3, σ is an arc of a circular helix.

Solution. If τ0 = 0, then Proposition 1.4 and Example 1.32 tell us that σ is
an arc of a circle, so it can be considered an arc of the degenerate circular helix
with pitch 0.

Assume, on the other hand, τ0 6= 0. Then

d

ds
(τ0~t+ κ0

~b) = τ0κ0~n− κ0τ0~n ≡ O ;

so τ0~t + κ0
~b has to be everywhere equal to a constant vector ~v0 having length√

κ2
0 + τ2

0 . Up to rotations in R3 (which do not change the curvature nor the
torsion; see Exercise 1.26), we may assume

~v0 =
√
κ2

0 + τ2
0 ~e3 =⇒ ~e3 ≡

τ0√
κ2

0 + τ2
0

~t+
κ0√
κ2

0 + τ2
0

~b ,

where ~e3 = (0, 0, 1) is the third vector of the canonical basis of R3. Let then
σ1 : I → R3 be defined by

σ1(s) = σ(s)− τ0s√
κ2

0 + τ2
0

~e3

(beware: as we shall see shortly, s is not the arc length parameter of σ1). We want
to show that σ1 is the parametrization of an arc of a circle contained in a plane
orthogonal to ~e3. First of all,

d

ds
〈σ1, ~e3〉 = 〈σ′1, ~e3〉 = 〈~t,~e3〉 −

τ0√
κ2

0 + τ2
0

≡ 0 ;

hence 〈σ1, ~e3〉 is constant, and so the support of σ1 is contained in a plane orthogonal
to ~e3, as claimed. Moreover,

σ′1 = ~t− τ0√
κ2

0 + τ2
0

~e3 =
κ2

0

κ2
0 + τ2

0

~t− κ0τ0
κ2

0 + τ2
0

~b and σ′′1 = κ0~n ;

hence

‖σ′1‖ ≡
κ0√
κ2

0 + τ2
0

and σ′1 ∧ σ′′1 =
κ3

0

κ2
0 + τ2

0

~b+
κ2

0τ0
κ2

0 + τ2
0

~t .

So, using (13) we find that the curvature κ1 of σ1 is

κ1 =
‖σ′1 ∧ σ′′1‖
‖σ′1‖3

≡ κ2
0 + τ2

0

κ0
.
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Thus σ1, being a plane curve with constant curvature, by Example 1.32 parametrizes
an arc of a circle with radius r = κ0/(κ

2
0+τ2

0 ) and contained in a plane orthogonal to
~e3. Up to a translation in R3, we may assume that this circle is centered at the ori-
gin, and hence σ indeed is a circular helix with radius r and pitch a = τ0/(κ

2
0 + τ2

0 ),
as stated. �

Problem 1.8. Curves on a sphere. Let σ : I → R3 be a biregular curve
parametrized by arc length.

(i) Prove that if the support of σ is contained in a sphere with radius R > 0
then

(16) τ2 + (κ̇/κ)2 ≡ R2κ2τ2 .

(ii) Prove that if κ̇ is nowhere zero and σ satisfies (16) then the support of σ
is contained in a sphere with radius R > 0. [Note: You can find further
information about curves contained in a sphere in Exercise 1.55.]

Solution. (i) Up to a translation in R3 (which does not change curvatures
and torsions; see Exercise 1.26), we may assume the center of the sphere to be in
the origin. So 〈σ, σ〉 ≡ R2; differentiating three times and applying Frenet-Serret
formulas we find

(17) 〈~t, σ〉 ≡ 0, κ〈~n, σ〉+ 1 ≡ 0 and κ̇〈~n, σ〉+ κτ〈~b, σ〉 ≡ 0 .

Now, {~t, ~n,~b} is an orthonormal basis; in particular, we may write

σ = 〈σ,~t〉~t+ 〈σ, ~n〉~n+ 〈σ,~b〉~b ,

so |〈σ,~t〉|2 + |〈σ, ~n〉|2 + |〈σ,~b〉|2 ≡ R2, and (17) implies (16).

(ii) Since κ̇ is nowhere zero, by equation (16) so is τ ; hence we may divide (16)
by τ2κ2, obtaining

1

κ2
+

(
1

τ

d

ds

(
1

κ

))2

≡ R2 .

Differentiating and recalling that κ̇ 6= 0, we find

τ

κ
+

d

ds

(
1

τ

d

ds

(
1

κ

))
≡ 0 .

Define now η : I → R3 by setting

η = σ +
1

κ
~n+

1

τ

d

ds

(
1

κ

)
~b .

Then

dη

ds
= ~t+

d

ds

(
1

κ

)
~n− ~t+

τ

κ
~b+

d

ds

(
1

τ

d

ds

(
1

κ

))
~b− d

ds

(
1

κ

)
~n ≡ O ,

that is the curve η is constant. This means that there exists a point p ∈ R3 such
that

‖σ − p‖2 =
1

κ2
+

(
1

τ

d

ds

(
1

κ

))2

≡ R2 ;

hence, the support of σ is contained in the sphere with radius R and center p. �
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Problem 1.9. Let f : R2 → R be a C∞ function; in this problem we shall
write fx = ∂f/∂x, fy = ∂f/∂y, fxx = ∂2f/∂x2, and so on. Choose a point
p ∈ f−1(0) = C, with fy(p) 6= 0, and let g : I → R, with I ⊆ R, a C∞ function such
that f−1(0) is given, in a neighborhood of p, by the graph of g, as in Proposition 1.2.
Finally, choose t0 ∈ I so that p =

(
t0, g(t0)

)
.

(i) Show that the tangent vector to C in p is parallel to
(
−fy(p), fx(p)

)
, and

thus the vector∇f(p) =
(
fx(p), fy(p)

)
is orthogonal to the tangent vector.

(ii) Show that the oriented curvature at p of C is given by

κ̃ =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

‖∇f‖3 ,

where we have oriented C in such a way that the tangent versor at p is a
positive multiple of

(
−fy(p), fx(p)

)
.

(iii) If f(x, y) = x4 +y4−xy−1 and p = (1, 0), compute the oriented curvature
of C at p.

Solution. (i) Consider the parametrization σ(t) =
(
t, g(t)

)
. The tangent

vector is parallel to σ′(t0) =
(
1, g′(t0)

)
. Since f

(
t, g(t)

)
≡ 0, differentiating with

respect to t we find that

(18) fx
(
t, g(t)

)
+ fy

(
t, g(t)

)
g′(t) ≡ 0 ;

so

g′(t0) = −fx(p)

fy(p)
,

and the assertion immediately follows.

(ii) By differentiating again we find σ′′(t0) =
(
0, g′′(t0)

)
; so using the formula

κ̃ = ‖σ′‖−3 det(σ′, σ′′) proved in Problem 1.1 we get

(19) κ̃ =
|fy(p)|3g′′(t0)

‖∇f(p)‖3 .

Take now one more derivative of (18) and evaluate it at t0: we find that

fxx(p) + fxy(p) g′(t0) + [fyx(p) + fyy(p) g′(t0)] g′(t0) + fy(p) g′′(t0) ≡ 0 .

The parametrization σ is oriented as required if and only if fy(p) < 0. So, extracting
g′′(t0) from the previous expression and inserting it in (19), we find the formula we
were seeking.

(iii) In this case,

fx(p) = 4 , fy(p) = −1 , fxx(p) = 12 , fxy(p) = −1 fyy(p) = 0 ,

and so κ̃ = 4/173/2. �

Exercises

PARAMETRIZATIONS AND CURVES

1.1. Prove that the curve σ : R→ R2 given by σ(t) =
(
t/(1 + t4), t/(1 + t2)

)
is

an injective regular parametrization, but not a homeomorphism with its image.

1.2. Draw the support of the curve parametrized, in polar coordinates (r, θ),
by σ1(θ) = (a cos θ, θ), for θ ∈ [0, 2π]. Note that the image is contained in a circle,
and that it is defined by the equation r = a cos θ.
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(a) (b)

Figure 6

1.3. Prove that the relation introduced in Definition 1.3 actually is an equiva-
lence relation on the set of parametrizations of class Ck.

1.4. Prove that the curve σ : R→ R2 given by σ(t) = (t2, t3) is not regular and
that no parametrization equivalent to it can be regular.

1.5. Prove that every open interval I ⊆ R is C∞-diffeomorphic to R.

1.6. Prove that every interval I ⊆ R is C∞-diffeomorphic to one of the follow-
ing: [0, 1), (0, 1), or [0, 1]. In particular, every regular curve admits a parametriza-
tion defined in one of these intervals.

1.7. Determine the parametrization σ1 : (−π, π) → R3 equivalent to the pa-
rametrization σ : R→ R2 given by σ(t) = (r cos t, r sin t) of the circle, obtained by
the parameter change s = arctan(t/4).

1.8. Prove that the two parametrizations σ, σ1 : [0, 2π]→ R2 of class C∞ of the
circle defined by σ(t) = (cos t, sin t) and σ1(t) = (cos 2t, sin 2t) are not equivalent
(see Example 1.7 and Remark 1.7).

1.9. Let σ1 : [0, 2π]→ R2 be defined by

σ1(t) =

{
(cos t, sin t) for t ∈ [0, π] ,

(−1, 0) for t ∈ [π, 2π] .

(i) Show that σ1 is continuous but not of class C1.
(ii) Prove that σ1 is not equivalent to the usual parametrization of the circle

σ : [0, 2π]→ R2 given by σ(t) = (cos t, sin t).

1.10. Prove that the support of the curve of the Example 1.19 cannot be the
image of a regular curve.

1.11. For all k ∈ N∗ ∪ {∞}, find a parametrized curve σ : R → R2 of class Ck

having as its support the graph of the absolute value function. Show next that no
such curve can be regular.

1.12. Let σ : [0, 1]→ R2 given by

σ(t) =

{(
−1 + cos(4πt), sin(4πt)

)
for t ∈ [0, 1/2] ,(

1 + cos(−4πt− π), sin(−4πt− π)
)

for t ∈ [1/2, 1] ;

see Fig. 6.(a).
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P

Figure 7. (a) epicycloid; (b) cycloid

(i) Show that σ defines a parametrization of class C1 but not C2.
(ii) Consider σ1 : [0, 1]→ R2 given by

σ1(t) =

{
σ(t) for t ∈ [0, 1/2] ,(
1 + cos(4πt+ π), sin(4πt+ π)

)
for t ∈ [1/2, 1] ;

see Fig. 6.(b). Show that σ and σ1 are not equivalent, not even as contin-
uous parametrizations.

1.13. The conchoid of Nicomedes is the plane curve described, in polar coor-
dinates, by the equation r = b + a/ cos θ, with fixed a, b 6= 0, and θ ∈ [−π, π].
Draw the support of the conchoid and determine a parametrization in Cartesian
coordinates.

1.14. Show, using the parameter change v = tan(t/2), that the parametriza-
tions σ1 : [0,∞)→ R3 and σ2 : [0, π)→ R3 of the circular helix, given by

σ1(v) =

(
r

1− v2

1 + v2
,

2rv

1 + v2
, 2a arctan v

)
and σ(t) = (r cos t, r sin t, at)

respectively, are equivalent.

1.15. Epicycloid. An epicycloid is the plane curve described by a point P of
a circle C with radius r that rolls without slipping on the outside of a circle C0

with radius R. Assume that the center of C0 is the origin, and that the point P
starts in (R, 0) and moves counterclockwise. Finally, denote by t the angle between
the positive x-axis and the vector OA, joining the origin and the center A of C; see
Fig. 7.(a).

(i) Show that the center A of C has coordinates
(
(r +R) cos t, (r +R) sin t

)
.

(ii) Having computed the coordinates of the vector AP , determine a param-
etrization of the epicycloid.

LENGTH AND RECTIFIABLE CURVES

1.16. Let σ : [a, b]→ Rn be a rectifiable curve. Show that

L(σ) ≥ ‖σ(b)− σ(a)‖ ,
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and deduce that a line segment is the shortest curve between two points.

1.17. Let f : R→ R be the function given by

f(t) =

{
t sin(π/t) if t 6= 0 ,

0 if t = 0 .

Show that the curve σ : [0, 1] → R2 given by σ(t) =
(
t, f(t)

)
is an injective, non-

rectifiable, continuous curve.

1.18. Cycloid. In the xy-plane consider a circle with radius 1 rolling without
slipping on the x-axis, as in Fig. 7.(b). The path described by a point of the
circle is called cycloid. Following the motion of such a point P , starting from the
origin and up to the moment when it arrives back to the x-axis, we get a regular
curve σ : [0, 2π] → R2 with the cycloid as its support. Show that σ is defined by
σ(t) = (t− sin t, 1− cos t), and determine its length.

1.19. Let σ : [a, b] → R3 be the usual parametrization σ(t) =
(
t, f(t)

)
of the

graph of a function f : [a, b]→ R of class C1. Prove that the length of σ is

L(σ) =

∫ b

a

√
1 + |f ′(t)|2 dt .

1.20. Prove that if σ : [0,+∞) → R2 is the logarithmic spiral parametrized as

in Problem 1.4, then the limit lim
t→+∞

∫ t
0
‖σ′(λ)‖ dλ exists and is finite. In a sense,

we may say that the logarithmic spiral has a finite length.

1.21. Determine a parametrization by arc length for the parabola σ : R → R2

given by σ(t) = (t, a t2) with a fixed a > 0.

REGULAR AND BIREGULAR CURVES

1.22. Prove that the support of a regular curve σ : I → Rn is contained in a
line if and only if the tangent versor ~t : I → Rn of σ is constant.

1.23. Let σ : I → R3 be a regular curve. Show that σ(t) and σ′(t) are orthogonal
for every value of t ∈ I if and only if ‖σ‖ is a constant non-zero function.

1.24. Determine which of the following maps σi : R → R3 are regular and/or
biregular curves:

(i) σ1(t) = (e−t, 2t, t− 1) ;
(ii) σ2(t) =

(
2t, (t2 − 1)2, 3t3

)
;

(iii) σ3(t) = (t, 2t, t3) .

1.25. Let σ : [−2π, 2π]→ R3 be the curve given by

σ(t) =
(
1 + cos t, sin t, 2 sin (t/2)

)
.

Prove that it is a regular curve having as its support the intersection of the sphere of
radius 2 centered at the origin with the cylinder having equation (x− 1)2 + y2 = 1.
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CURVATURE AND TORSION

1.26. Let σ : I → R3 be a biregular curve parametrized by arc length, and
ρ : R3 → R3 a rigid motion. Prove that ρ ◦ σ is a biregular curve parametrized by
arc length with the same curvature and the same torsion as σ.

1.27. Let σ : R→ R3 be the curve given by σ(t) = (1 + cos t, 1− sin t, cos 2t).
Prove that σ is a regular curve, and compute its curvature and its torsion without
reparametrizing it by arc length.

1.28. Let f : U → R be a function of class C∞ defined on an open subset U of
the plane R2, and σ : I → U a regular curve such that f ◦ σ ≡ 0. Prove that for
every t ∈ I the tangent vector σ′(t) is orthogonal to the gradient of f computed in
σ(t), and determine the oriented curvature of σ as a function of the derivatives of
f .

1.29. Let σ : I → R2 be a regular plane curve, given in polar coordinates by
the equation r = ρ(θ), that is,

σ(θ) =
(
ρ(θ) cos θ, ρ(θ) sin θ

)
for some function ρ : I → R+ of class C∞ nowhere zero. Prove that the arc length
of σ is given by

s(θ) =

∫ θ

θ0

√
ρ2 + (ρ′)2 dθ ,

and that the oriented curvature of σ is

κ̃ =
2(ρ′)2 − ρρ′′ + ρ2(
ρ2 + (ρ′)2

)3/2 .

1.30. Let σ : (0,+∞) → R3 be the curve given by σ(t) = (t, 2t, t4). Prove
that σ is a regular curve whose support is contained in a plane, and compute the
curvature of σ at each point.

1.31. Determine the arc length, the curvature and the torsion of the curve
σ : R→ R3 defined by σ(t) = (a cosh t, b sinh t, a t). Prove that, if a = b = 1, then
the curvature is equal to the torsion for every value of the parameter.

1.32. Let σ : R→ R3 be the mapping defined by

σ(t) = (2
√

2 t− sin t, 2
√

2 sin t+ t, 3 cos t) .

Prove that the curve defined by σ is a circular helix (up to a rigid motion of R3).

1.33. Consider a plane curve σ : I → R2 parametrized by arc length. Prove
that if the vector Oσ(s) forms a constant angle θ with the tangent versor ~t(s) then
σ is a logarithmic spiral (see Problem 1.4).

1.34. Let σ : [a, b]→ R3 be a curve of class at least C2.

(i) Show that if the support of σ is contained in a plane through the origin
then the vectors σ, σ′, and σ′′ are linearly dependent.

(ii) Show that if the vectors σ, σ′, and σ′′ are linearly dependent but the
vectors σ, σ′ are linearly independent then the support of σ is contained
in a plane through the origin.

(iii) Find an example in which σ and σ′ are linearly dependent but the support
of σ is not contained in a plane through the origin.
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FRENET FRAME AND OSCULATING PLANE

1.35. Let σ : R→ R3 be the curve σ(t) = (et, e2t, e3t). Find the values of t ∈ R
for which the tangent vector σ′(t) is orthogonal to the vector ~v = (1, 2, 3).

1.36. Let σ : R → R3 be the curve σ(t) =
(
(4/5) cos t, 1 − sin t,−(3/5) cos t

)
.

Determine the Frenet frame of σ.

1.37. Let σ : R → R2 be the plane curve parametrized by σ(t) = (t, 1
3 t

3).
Determine the curvature of σ and study the values of the parameter for which it is
zero. Determine the normal versor and the oriented normal versor, wherever they
are defined.

1.38. Let σ : I → R3 be a curve of class at least C2. Show that the vector σ′′

is parallel to the osculating plane and that its components along the vectors t and
n are ‖σ′‖′ and κ‖σ′‖2, respectively.
If σ is biregular, show that the osculating plane in σ(t) is the plane through σ(t)
and parallel to σ′ and σ′′. So, the equation of the osculating plane is given by
〈σ′(t0) ∧ σ′′(t0), ~x− σ(t0)〉 = 0.

1.39. Let σ be a curve such that all its affine tangent lines pass through a given
point. Show that if σ is regular then its support is contained in a straight line, and
find a counterexample with a non-regular σ (considering the tangent lines only in
the points of the curve where they are defined).

1.40. Let σ : R→ R3 be a Jordan arc of class C2, not necessarily regular, such
that all its affine tangent lines pass through a given point P . Show that the support
of σ is contained in a straight line, and find a counterexample with a Jordan arc
not of class C2 (considering the tangent lines only in the points of the curve where
they are defined).

1.41. Let σ : [a, b]→ R3 be a biregular curve such that all its affine normal line
pass through a given point. Show that the support of σ is contained in a circle.

1.42. Consider the curve σ : R→ R3 given by σ(t) = (t, (1/2)t2, (1/3)t3). Show
that the osculating planes of σ in three different points σ(t1), σ(t2), σ(t3) intersect
in a point belonging to the plane generated by the points σ(t1), σ(t2) and σ(t3).

1.43. Show that the binormal vector to a circular helix parametrized as in
Example 1.8 forms a constant angle with the axis of the cylinder containing the
helix.

1.44. Show that the curve σ : R→ R3 parametrized by

σ(t) = (t+
√

3 sin t, 2 cos t,
√

3 t− sin t),

is a circular helix (up to a rigid motion of R3).

1.45. Let γ : R → R3 be the curve parametrized by t 7→ γ(t) = (t, At2, Btn),
where A,B > 0 are real numbers and n ≥ 1 is an integer.

(i) Determine a map η : R → R3 such that η(t) is the intersection point
between the affine tangent line to γ in γ(t) and the plane z = 0.

(ii) Find conditions on A, B, n in order for η to be a regular curve.
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Figure 8. Generalized helix σ(t) = (cos t, sin(2t), t)

FRENET-SERRET FORMULAS

1.46. Determine the curvature and the torsion at each point of the curve
σ : R→ R3 parametrized by σ(t) = (3t− t3, 3t2, 3t+ t3).

1.47. Determine the curvature, the torsion, and the Frenet frame of the curve
σ : R→ R3 given by σ(t) =

(
a(t− sin t), a(1− cos t), bt

)
.

1.48. Given a function κ̃ : I → R of class Ck, prove that there exists a unique
(up to plane rigid motions) regular curve σ : I → R2 of class Ck+2 parametrized by
arc length having oriented curvature κ̃.

1.49. Generalized helices. Let σ : I → R3 be a biregular curve parametrized
by arc length. Prove that the following assertions are equivalent:

(i) there exist two constants a, b ∈ R, not both zero, such that aκ+ bτ ≡ 0;
(ii) there exists a nonzero versor ~v0 such that 〈~t,~v0〉 is constant;
(iii) there exists a plane π such that ~n(s) ∈ π for all s ∈ I;

(iv) there exists a nonzero versor ~v0 such that 〈~b,~v0〉 is constant;
(v) there exist θ ∈ (0, π) \ {π/2} and a biregular plane curve parametrized by

arc length η : Jθ → R3, where Jθ = (sin θ)I, such that

σ(s) = η(s sin θ) + s cos θ~bη

for all s ∈ I, where ~bη is the (constant!) binormal versor of η;
(vi) the curve σ has a parametrization of the form σ(s) = η(s) + (s − s0)~v,

where η is a plane curve parametrized by arc length, and v is a vector
orthogonal to the plane containing the support of η.

A curve σ satisfying any of these equivalent conditions is called (generalized) helix ;
see Fig. 8. Finally, write the curvature, the torsion and the Frenet frame of σ as
functions of the curvature and of the Frenet frame of η.
[Hint : if τ/κ = c is constant, set c = cosα

sinα and ~v0(s) = cosα~t(s) + sinα~n(s) and
prove that ~v0 is constant.]
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1.50. Check for which values of the constants a, b ∈ R the curve σ : R → R3

parametrized by σ(t) = (at, bt2, t3) is a generalized helix.

1.51. Let σ : I → R3 be a biregular curve parametrized by arc length. Prove

that κ ≡ ±τ if and only if there exists a nonzero versor ~v such that 〈~t,~v〉 ≡ 〈~b,~v〉.
Prove furthermore that, in this case, 〈~t,~v〉 is constant.

1.52. Let σ : R→ R3 be the curve σ(t) =
(
1+cos t, sin t, 2 sin(t/2)

)
. Prove that

σ is not a plane curve and that its support is contained in the sphere with radius
2 and center at the origin.

1.53. Let σ : [a, b]→ R3 be a biregular curve parametrized by arc length. Show
that

d3σ

ds3
= −κ2~t+ κ̇~n+ κτ~b .

1.54. Let σ : I → R3 be a biregular curve parametrized by arc length having
tangent versor t, and for every ε 6= 0 set σε = σ + εt. Prove that σε always is a
regular curve, and that the normal versor of σε is always orthogonal to the normal
versor of σ if the curvature κ of σ is of the form

κ(s) = c(e2s/ε − c2ε2)−1/2

for some constant 0 < c < 1/ε.

1.55. Let σ : I → R3 be a biregular curve parametrized by arc length, having
constant curvature κ0 > 0. Prove that the support of σ is contained in a sphere
with radius R > 0 if and only if κ0 > 1/R and τ ≡ 0.

1.56. Let σ : I → R3 and α : I → R3 be two different biregular curves param-
etrized by arc length, having equal affine binormal lines in the points corresponding
to the same parameter. Prove that the curves σ and α are plane.

1.57. Determine curvature and torsion of the biregular curve σ : (0,+∞)→ R3

defined by σ(t) = (2t, 1+2t
2t ,

1−4t2

2t ).

1.58. Determine curvature and torsion of the regular curve σ : R→ R3 defined
by σ(t) = (cos t, sin t, 2 sin t

2 ).

1.59. The Darboux vector Let σ : I → R be a biregular curve parametrized

by arc length. The vector ~d(s) = τ(s)~t(s) + κ(s)~b is called the Darboux vector at

σ(s). Show that ~d satisfies ~̇t = ~d ∧ ~t, ~̇n = ~d ∧ ~n, ~̇b = ~d ∧~b.
1.60. Let σ : I → R3 be a regular curve parametrized by arc length, having

nowhere zero curvature κ and torsion τ ; let s0 ∈ I be fixed. For every ε ∈ R let
γε : I → R3 be the curve given by γε(t) = σ(t)+εb(t), where {t,n,b} is the Frenet
frame of σ. Denote by tε, nε e bε the tangent, normal and binormal versors of γε,
and by κε, τε the curvature and the torsion of γε. Prove that:

(i) γε is always a biregular curve;
(ii) σ is a plane curve if and only if bε ≡ ±b;
(iii) σ is a plane curve if and only if tε ≡ t if and only if nε ≡ n.

1.61. Bertrand curves. Two biregular curves σ, σ1 : I → R3, having normal
versors ~n and ~n1 respectively, are called Bertrand curves if they have the same
affine normal line at every point. In particular, possibly modifying the orientation,
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it is always possible to assume that ~n ≡ ~n1, that is, that the curves have the same
normal versors.

(i) Show that if σ and σ1 are the parametrizations by arc length of two
Bertrand curves then there exists a real-valued function α : I → R such
that σ1 ≡ σ + α~n.

(ii) Show that the distance between points corresponding to the same param-
eter of two Bertrand curves is constant, that is, the function α in (i) is
constant.

(iii) Show that the angle between the tangent lines in two corresponding points
of two Bertrand curves is constant.

(iv) Show that if σ and σ1 are biregular Bertrand curves with never vanishing
torsion then there exist constants a ∈ R, b ∈ R∗ such that κ + aτ ≡ b,
where κ and τ are the curvature and the torsion of σ.

(v) Prove the converse of the previous statement: if σ is a curve having curva-
ture κ and torsion τ , both nowhere zero, such that κ+aτ ≡ b for suitable
constants a ∈ R and b ∈ R∗, then there exists another curve σ1 such that
σ and σ1 are Bertrand curves.

(vi) Show that if σ is a biregular curve with nowhere zero torsion τthen σ is
a circular helix if and only if there exist at least two curves σ1 and σ2

such that σ and σi are Bertrand curves, for i = 1, 2. Show that, in this
case, there exist infinitely many curves σ̃ such that σ and σ̃ are Bertrand
curves.

(vii) Prove that if two Bertrand curves σ and σ1 have the same binormal versor
then there exists a constant a > 0 such that a(κ2 + τ2) = κ.

THE FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF
CURVES

1.62. Find a plane curve, parametrized by arc length s > 0, with curvature
κ(s) = 1/s. Do the same with the oriented curvature κ̃(s) = 1/s instead of the
usual curvature.

1.63. Compute the curvature of the catenary σ : R → R2 parametrized by
σ(t) =

(
a cosh (t/a) , t

)
, where a is a real constant.

1.64. Given a > 0, determine a curve having curvature and torsion given re-
spectively by κ(s) =

√
1/2as and τ(s) = 0 for s > 0.

1.65. Compute curvature and torsion of the curve σ : R→ R3 parametrized by
σ(t) = et(cos t, sin t, 3).

1.66. Regular curves with nonzero constant torsion. We know from
Example 1.37 and Problem 1.7 that the circular helix is characterized by having
both curvature and torsion constant (and both nonzero, except for the degenerate
case with support contained in a plane circle). The aim of this exercise is to study
biregular curves having nonzero constant torsion in R3.

(i) Show that if σ is a biregular curve having constant torsion τ ≡ a then

σ(t) = a−1

∫ t

t0

~b(s) ∧ ~̇bds.
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Moreover, prove that the vectors ~b, ~̇b, and ~̈b are linearly independent for
all values of the parameter.

(ii) Consider, on the other hand, a function f : I → R3 of class at least C2,
having values in the unitary sphere (that is, ‖f‖ ≡ 1), and such that
the vectors f(λ), f ′(λ), and f ′′(λ) are linearly independent for all λ ∈ I.
Consider the curve σ : I → R3 given by

σ(t) = a

∫ t

t0

f(λ) ∧ f ′(λ) dλ ,

for some nonzero constant a and a fixed value t0 ∈ I. Show that σ is
regular and that it has constant torsion τ ≡ a−1.

EVOLVENT, EVOLUTE, INVOLUTE

Definition 1.E.1. Let σ : I → R2 be a biregular plane curve, parametrized by
arc length. The plane curve β : I → R2 parametrized by

β(s) = σ(s) +
1

κ(s)
~n(s)

is the evolute of σ. Now let σ : I → R3 be a regular plane curve, parametrized by
arc length. A curve σ̃ : I → R3 (not necessarily parametrized by arc length) is an
involute (or evolvent) of σ if σ̇(s) is parallel to σ̃(s)− σ(s) and orthogonal to σ̃′(s)
for all s ∈ I.

1.67. Show that the affine normal line to a biregular plane curve σ : I → R2 at
the point σ(s) is equal to the affine tangent line of its evolute β at the point β(s).
In particular, the affine tangent line to the evolute at β(s) is orthogonal to the
affine tangent line to the original curve at σ(s).

1.68. Show that the evolute of the catenary σ(t) = (t, cosh t) is parametrized
by β(t) = (t− sinh t cosh t, 2 cosh t).

1.69. Find the evolute β of the curve σ(t) = (cos3 t, sin3 t).

1.70. Given a > 0 and b < 0, find the evolute of the logarithmic spiral
parametrized by σ(t) = (aebt cos t, aebt sin t).

1.71. Prove that any biregular plane curve σ is an involute of its evolute.
Moreover, prove that any couple of involutes of σ are Bertrand curves (see Exercise
1.61).

1.72. Let σ : I → R3 be a regular curve parametrized by arc length. For c ∈ R,
define σc : I → R3 by σc(s) = σ(s) + (c− s)σ̇(s) for all s ∈ I.

(i) Prove that a curve σ̃ : I → R3 is an involute of σ if and only if there exists
c ∈ R such that σ̃(s) = σc(s) for all s ∈ I.

(ii) Assume that σ is biregular and prove that the involute σc is biregular for
all values of s 6= c.Prove, moreover, that the tangent versor of σc in σc(s)
is parallel to the normal versor of σ in σ(s) and, in general, σc is not
parametrized by arc length.

(iii) Assume that σ is biregular and prove that the curvature of an involute σc
is given by

√
κ2+τ2

|(c−s)κ| , in terms of the curvature κ and the torsion τ of σ.
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(iv) Let σ be the circular helix, as in the Example 1.22. Prove that each
involute σc of σ is a plane curve.

(v) Determine the involute of the catenary σ(t) = (t, cosh t) and of the circle
σ1(t) = (r cos t, r sin t).

1.73. Let σ : I → R3 be a biregular curve parametrized by arc length and let
σ̂ = σ − κ−1n, where n is the normal versor of σ. Prove that if σ is an involute
of σ̂, then σ is a plane curve.

SPHERICAL INDICATRICES

1.74. Let σ : I → R3 be a regular curve of curvature κ. Prove that ~t : I → R3

is regular if and only if σ is biregular, and that the arc length of σ is an arc length
for ~t as well if and only if κ ≡ 1.

1.75. Let σ : I → R3 be a biregular curve of curvature κ and torsion τ . Denote
by s the arc length of σ, and by s1 the arc length of the normal curve ~n : I → R3.
Prove that ds1/ds =

√
κ2 + τ2.

1.76. Let σ : R → R3 be the circular helix given by σ(t) = (r cos t, r sin t, at).
Prove that its tangent versor ~t : R → R3 is a circle with center on the z-axis, and
compute its radius of curvature.

1.77. Let σ : I → R3 be a biregular curve. Prove that if the support of its
tangent versor ~t : I → R3 is a circle then σ is (up to a rigid motion of R3) a circular
helix.

1.78. Let σ : I → R3 be a biregular curve. Show that the tangent vector at a
point of the tangent curve ~t : I → R3 to σ is parallel to the affine normal line at
the corresponding point of σ.

1.79. Let σ : I → R3 be a biregular curve having curvature κ and torsion τ .
Prove that the curvature κ1 of the tangent curve ~t : I → R3 of σ is given by

κ1 =

√
1 +

τ2

κ2
.





CHAPTER 2

Local theory of surfaces

The rest of this notes is devoted to the study of surfaces in space. As we did for
the curves, we shall begin by trying to understand how best define a surface; but,
unlike what happened for curves, for surfaces it will turn out to be more useful to
work with subsets of R3 that locally look like an open subset of the plane, instead of
working with maps from an open subset of R2 to R3 having an injective differential.

When we say that a surface locally looks like an open subset of the plane, we
are not (only) talking about its topological structure, but (above all) about its
differential structure. In other words, it must be possible to differentiate functions
on a surface exactly as we do on open subsets of the plane: computing a partial
derivative is a purely local operation, so it is has to be possible to perform similar
operation in every object that locally looks (from a differential viewpoint) like an
open subset of the plane.

To carry out this program, after presenting in Section 2.1 the official definition
of what a surface is, in Section 2.2 we shall define precisely the family of functions
that are smooth on a surface, that is, the functions we shall be able to differentiate;
in Section 2.4 we shall show how to differentiate them, and we shall define the
notion of differential of a smooth map between surfaces. Furthermore, in Sections
2.3 and 2.4, we shall introduce the tangent vectors to a surface and we shall explain
why they are an embodiment of partial derivatives.

2.1. How to define a surface

As we did for curves, we begin by discussing the question of the correct defini-
tion of what a surface is. Our experience from the one-dimensional case suggests
two possible approaches: we might define surfaces as subsets of the space with some
properties, or we can define them as maps from an open subset of the plane to the
space, satisfying suitable regularity properties.

Working with curves we preferred this second approach, since the existence of
parameterizations by arc length allowed us to directly relate the geometric proper-
ties of the support of the curve with the differential properties of the curve itself.

As we shall see, in the case of surfaces the situation is significantly more com-
plex. The approach that emphasizes maps will be useful to study local questions;
but from a global viewpoint it will be more effective to privilege the other approach.

But let us not disclose too much too soon. Let us instead start by introducing
the obvious generalization of the notion of a regular curve:

Definition 2.1. An immersed (or parametrized) surface in space is a map
ϕ : U → R3 of class C∞, where U ⊆ R2 is an open set, such that the differential
dϕx : R2 → R3 is injective (that is, has rank 2) in every point x ∈ U . The image
ϕ(U) of ϕ is the support of the immersed surface.

43
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Remark 2.1. For reasons that will become clear later (see Remark 2.22), when
studying surfaces we shall only use C∞ maps, and we shall not discuss lower regu-
larity issues.

Remark 2.2. The differential dϕx of ϕ = (ϕ1, ϕ2, ϕ3) in x ∈ U is represented
by the Jacobian matrix

Jacϕ (x) =

∣∣∣∣∣∣∣
∂ϕ1

∂x1
(x) ∂ϕ1

∂x2
(x)

∂ϕ2

∂x1
(x) ∂ϕ2

∂x2
(x)

∂ϕ3

∂x1
(x) ∂ϕ3

∂x2
(x)

∣∣∣∣∣∣∣ ∈M3,2(R) .

As for curves, in this definition the emphasis is on the map rather than on its
image. Moreover, we are not asking for the immersed surfaces to be a homeomor-
phism with their images or to be injective (see Example 2.1); both these properties
are nevertheless locally true. To prove this, we need a lemma, somewhat technical
but extremely useful. In turn, the proof of the lemma will depend on a classical
Differential Calculus theorem (see [3, p. 140]):

Theorem 2.1 (Inverse function theorem). Let F : Ω → Rn be a map of class
Ck, with k ∈ N∗ ∪ {∞}, where Ω is an open subset of Rn. Let p0 ∈ Ω be such
that det JacF (p0) 6= 0, where JacF is the Jacobian matrix of F . Then there ex-
ist a neighborhood U ⊂ Ω of p0 and a neighborhood V ⊂ Rn of F (p0) such that
F |U : U → V is a diffeomorphism of class Ck.

Lemma 2.1. Let ϕ : U → R3 be an immersed surface, where U ⊆ R2 is open.
Then for all x0 ∈ U there exist an open set Ω ⊆ R3 containing (x0, 0) ∈ U ×R, an
open neighborhood W ⊆ R3 of ϕ(x0), and a diffeomorphism G : Ω → W such that
G(x, 0) = ϕ(x) for all (x, 0) ∈ Ω ∩ (U × {0}).

Proof. By definition of immersed surface, the differential in x0 of the map
ϕ = (ϕ1, ϕ2, ϕ3) has rank 2; so the Jacobian matrix of ϕ computed in x0 has a 2×2
minor with nonzero determinant. Up to reordering the coordinates, we may assume
that this minor is obtained by discarding the third row, that is, we can assume that

det

(
∂ϕi
∂xj

(x0)

)
i,j=1,2

6= 0 .

Let then G : U × R→ R3 be given by

G(x1, x2, t) = ϕ(x1, x2) + (0, 0, t) ;

note that if to find the minor with nonzero determinant,we had discarded the j-th
row, then G would be defined by adding t~ej to ϕ, where ~ej is the j-th vector of the

canonical basis of R3.
Clearly, G(x, 0) = ϕ(x) for all x ∈ U , and

det JacG (x0, O) = det

(
∂ϕi
∂xj

(x0)

)
i,j=1,2

6= 0 ;

So the inverse function theorem (Theorem 2.1) gives us a neighborhood Ω ⊆ U ×R
of (x0, O) and a neighborhood W ⊆ R3 of ϕ(x0) such that G|Ω is a diffeomorphism
between Ω and W , as required. �

In particular, we have
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Figure 1

Corollary 2.1. Let ϕ : U → R3 be an immersed surface. Then every x0 ∈ U
has a neighborhood U1 ⊆ U such that ϕ|U1

: U1 → R3 is a homeomorphism with its
image.

Proof. Let G : Ω → W be the diffeomorphism provided by the previous
lemma, π : R3 → R2 the projection on the first two coordinates, and set

U1 = π
(
Ω ∩ (U × {0})

)
.

Then ϕ(x) = G(x, 0) for all x ∈ U1, and so ϕ|U1 is a homeomorphism with its
image, as required. �

However, it is important to remember that, in general, immersed surfaces are
not homeomorphisms with their images:

Example 2.1. For U = (−1,+∞)× R, let ϕ : U → R3 be given by

ϕ(x, y) =

(
3x

1 + x3
,

3x2

1 + x3
, y

)
;

see Fig. 1. It is easy to verify that ϕ is an injective immersed surface, but is not a
homeomorphism with its image, as ϕ

(
(−1, 1)× (−1, 1)

)
is not open in ϕ(U).

A careful consideration of the material seen in the previous chapters will show
that the approach based on defining a curve as an equivalence class of maps was
effective because of the existence of a canonical representative element defined from
such a fundamental geometric concept as length. The drawback (or the advantage,
depending on which half of the glass you prefer) of the theory of surfaces with
respect to the theory of curves is that for surfaces this cannot be done, and cannot
be done because of intrinsic, unavoidable reasons.

Of course, we may define two immersed surfaces ϕ : U → R3 and ψ : V → R3

to be equivalent if there exists a diffeomorphism h : U → V such that ϕ = ψ ◦ h.
However, the problem we face with such a definition is that the procedure we
followed in the case of curves to choose in each equivalence class an (essentially)
unique representative element does not work anymore.

In the case of curves, we have chosen a canonical representative element, the
parametrization by arc length, by using the geometric notion of length. Two equiv-
alent parametrizations by arc length have to differ by a diffeomorphism h that
preserves lengths; and this implies (see the proof of Proposition 1.4) that |h′| ≡ 1,
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so h is an affine isometry and the parametrization by arc length is unique up to
parameter translations (and orientation changes).

In the case of surfaces, it is natural to try using area instead of length. Two
equivalent “parametrizations by area” should differ by a diffeomorphism h of open
sets in the plane that preserves areas. But Calculus experts teach us that a dif-
feomorphism h preserves areas if and only if |det Jac(h)| ≡ 1, which is a far
weaker condition than |h′| ≡ 1. For instance, all diffeomorphisms of the form
h(x, y) =

(
x + f(y), y

)
, where f is any smooth function of one variable, preserve

areas; so using this method there is no hope of identifying an essentially unique
representative element.

But the obstruction is even more fundamental than this. Arc length parametri-
zation works because it is a (local) isometry between an interval and the curve; on
the other hand, we shall see towards the end of Chapter 3 (with Gauss’ theorema
egregium Theorem 3.5) that, except for very particular cases, isometries between an
open set in the plane and a surface do not exist. A notion equivalent to parametriza-
tion by arc length to study the metric structure of surface cannot possibly exist.
Moreover, even the topological structure of surface is far more complex than that
of open subsets of the plane (see Remark 2.6); to try and study it by using a single
map would be hopeless.

Historically, the most successful — for its effectiveness both in dealing with
local questions and in studying global problems — definition of a surface tries, in
a sense, to take the best from both worlds. It emphasizes the support, that is,
the subset of R3 considered as such; but the idea that a surface has to be a set
locally built like an open subset of the plane is made concrete and formal by using
immersed surfaces (which work well locally, as we have seen).

Enough chatting: it is now time to give the official definition of surface in space.

Definition 2.2. A connected subset S ⊂ R3 is a (regular or embedded) surface
in space if for all p ∈ S there exists a map ϕ : U → R3 of class C∞, where U ⊆ R2

is an open subset, such that:

(a) ϕ(U) ⊆ S is an open neighborhood of p in S (or, equivalently, there exists
an open neighborhood W ⊆ R3 of p in R3 such that ϕ(U) = W ∩ S);

(b) ϕ is a homeomorphism with its image;
(c) the differential dϕx : R2 → R3 is injective (that is, it has maximum rank,

i.e., 2) for all x ∈ U .

Any map ϕ satisfying (a)–(c) is a local (or regular) parametrization in p; if O ∈ U
and ϕ(O) = p we say that the local parametrization is centered in p. The inverse
map ϕ−1 : ϕ(U) → U is called local chart in p; the neighborhood ϕ(U) of p in S
is called a coordinate neighborhood , the coordinates

(
x1(p), x2(p)

)
= ϕ−1(p) are

called local coordinates of p; and, for j = 1, 2, the curve t 7→ ϕ(xo + t~ej) is the j-th
coordinate curve (or line) through ϕ(xo).

Definition 2.3. An atlas for a regular surface S ⊂ R3 is a family A = {ϕα}
of local parametrizations ϕα : Uα → S such that S =

⋃
α ϕα(Uα).

Remark 2.3. Clearly, a local parametrization ϕ : U → R3 of a surface S carries
the topology of the open subset U of the plane to the topology of the open set ϕ(U)
of S, since ϕ is a homeomorphism between U and ϕ(U). But to work with surfaces
it is important to keep in mind that ϕ carries another fundamental thing from U to
S: a coordinate system. As shown in Fig. 2, the local parametrization ϕ assigns to
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U

S

ϕ(U)

ϕ

R2

(x,y)7→p

Figure 2. A local parametrization

each point p ∈ ϕ(U) a pair of real numbers (x, y) = ϕ−1(p) ∈ U , which will play the
role of coordinates of p in S, in analogy to the role played by the usual Cartesian
coordinates for points in the plane. In a sense, choosing a local parametrization
of a surface amounts to constructing a geographical map of a part of the surface;
and this is the reason (historically too) of the use of geographical terminology
in this context. Warning: Different local parametrizations provide different local
coordinates (charts)! In the next section we shall describe the connection between
coordinates induced by different parametrizations (Theorem 2.2).

Remark 2.4. If ϕ : U → S is a local parametrization of a surface S ⊂ R3,
and χ : U1 → U is a diffeomorphism, where U1 is another open subset of R2,
then ϕ̃ = ϕ ◦ χ is another local parametrization of S (why?). In particular, if
p = ϕ(x0) ∈ S and χ is the translation χ(x) = x + x0 then ϕ̃ = ϕ ◦ χ is a local
parametrization of S centered at p.

Remark 2.5. If ϕ : U → S is a local parametrization of a surface S ⊂ R3, and
V ⊂ U is an open subset of R2 then ϕ|V also is a local parametrization of S (why?).
In particular, we may find local parametrizations with arbitrarily small domain.

As we shall see, the philosophy beneath the theory of surfaces is to use local
parametrizations to transfer notions, properties, and proofs from open subsets of
the plane to open sets of the surfaces, and vice versa. But let us see for now some
examples of surface.

Example 2.2. The plane S ⊂ R3 through p0 ∈ R3 and parallel to the linearly
independent vectors ~v1, ~v2 ∈ R3 is a regular surface, with an atlas consisting of a
single local parametrization ϕ : R2 → R3 given by ϕ(x) = p0 + x1~v1 + x2~v2.

Example 2.3. Let U ⊆ R2 be an open set, and f ∈ C∞(U) an arbitrary
function. Then the graph Γf =

{(
x, f(x)

)
∈ R3

∣∣ x ∈ U} of f is a regular surface,

with an atlas consisting of a single local parametrization ϕ : U → R3 given by
ϕ(x) =

(
x, f(x)

)
. Indeed, condition (a) of the definition of a surface is clearly

satisfied. The restriction to Γf of the projection on the first two coordinates is the



48 2. LOCAL THEORY OF SURFACES

x

y

z

p
S    2

φ

θ

Figure 3. Spherical coordinates

(continuous) inverse of ϕ, so condition (b) is satisfied as well. Finally,

Jacϕ(x) =

∣∣∣∣∣∣∣
1 0

0 1
∂f
∂x1

(x) ∂f
∂x2

(x)

∣∣∣∣∣∣∣
has rank 2 everywhere, and we are done.

Example 2.4. The support S of an immersed surface ϕ that is a homeomor-
phism with its image is a regular surface with atlas A = {ϕ}. In this case we shall
say that ϕ is a global parametrization of S.

Example 2.5. We want to show that the sphere

S2 = {p ∈ R3 | ‖p‖ = 1}
with center in the origin and radius 1 is a regular surface by finding an atlas. Let
U = {(x, y) ∈ R2 | x2 + y2 < 1} be the open unit disc in the plane, and define
ϕ1, . . . , ϕ6 : U → R3 by setting

ϕ1(x, y) =
(
x, y,

√
1− x2 − y2

)
, ϕ2(x, y) =

(
x, y,−

√
1− x2 − y2

)
,

ϕ3(x, y) =
(
x,
√

1− x2 − y2, y
)
, ϕ4(x, y) =

(
x,−

√
1− x2 − y2, y

)
,

ϕ5(x, y) =
(√

1− x2 − y2, x, y
)
, ϕ6(x, y) =

(
−
√

1− x2 − y2, x, y
)
.

Arguing as in Example 2.3, it is easy to see that all the maps ϕj are local param-
etrizations of S2; moreover, S2 = ϕ1(U) ∪ · · · ∪ ϕ6(U), and so {ϕ1, . . . , ϕ6} is an
atlas for S2. Note that if we omit even one of these local parametrizations we do
not cover the whole sphere.

Example 2.6. We now describe another atlas for the sphere. Set

U = {(θ, φ) ∈ R2 | 0 < θ < π, 0 < φ < 2π} ,
and let ϕ1 : U → R3 be given by

ϕ1(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) ;

we want to prove that ϕ1 is a local parametrization of the sphere. The parameter
θ is usually called colatitude (the latitude is π/2− θ), while φ is the longitude. The
local coordinates (θ, φ) are called spherical coordinates; see Fig. 3.
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First of all,

ϕ1(U) = S2 \ {(x, y, z) ∈ R3 | y = 0, x ≥ 0}
is an open subset of S2, so condition (a) is satisfied. Next,

Jacϕ1(θ, φ) =

∣∣∣∣∣∣
cos θ cosφ − sin θ sinφ
cos θ sinφ sin θ cosφ
− sin θ 0

∣∣∣∣∣∣ ,
and it is straightforward to verify that this matrix has rank 2 everywhere (since
sin θ 6= 0 when (θ, φ) ∈ U), so condition (c) is satisfied. Moreover, if we take
an arbitrary (x, y, z) = ϕ(θ, φ) ∈ ϕ1(U), we find θ = arccos z ∈ (0, π); being
sin θ 6= 0, we recover (cosφ, sinφ) ∈ S1 and consequently φ ∈ (0, 2π) in terms of
x, y and z, so ϕ1 is globally injective. To conclude, we should prove that ϕ1 is
a homeomorphism with its image (i.e., that ϕ−1

1 is continuous); but we shall see
shortly (Proposition 2.3) that this is a consequence of the fact that we already
know that S2 is a surface, so we leave this as an exercise (but see also Example
2.8). Finally, let ϕ2 : U → R3 be given by

ϕ2(θ, φ) = (− sin θ cosφ, cos θ,− sin θ sinφ) .

Arguing as above, we see that ϕ2 is also a local parametrization, with

ϕ2(U) = S2 \ {(x, y, z) ∈ R3 | z = 0, x ≤ 0} ,
so {ϕ1, ϕ2} is an atlas for S2.

Exercise 2.4 describes a third possible atlas for the sphere.

Example 2.7. Let S ⊂ R3 be a surface, and S1 ⊆ S an open subset of
S. Then S1 is a surface as well. Indeed, choose p ∈ S1 and let ϕ : U → R3

be a local parametrization of S at p. Then U1 = ϕ−1(S1) is open in R2 and
ϕ1 = ϕ|U1 : U1 → R3 is a local parametrization of S1 at p.

If χ : Ω→ R3 is a diffeomorphism with its image defined on an open neighbor-
hood Ω of S, then χ(S) is a surface. Indeed, if ϕ is a local parametrization of S at
p ∈ S, the map χ ◦ ϕ is a local parametrization of χ(S) at χ(p).

Example 2.8 (Surfaces of revolution). Let H ⊂ R3 be a plane, C ⊂ H the
support of an open Jordan arc or of a Jordan curve of class C∞, and ` ⊂ H a
straight line disjoint from C. We want to prove that the set S ⊂ R3 obtained by
rotating C around ` is a regular surface, called surface of revolution having C as
its generatrix and ` as its axis.

Without loss of generality, we may assume that H is the plane xz, that ` is
the z-axis, and that C lies in the half-plane {x > 0}. If C is the support of an
open Jordan arc, we have by definition a global parametrization σ : I → R3 that
is a homeomorphism with its image, where I ⊆ R is an open interval. Since all
open intervals are diffeomorphic to R (Exercise 1.5), we may assume without loss
of generality that I = R. If, on the other hand, C is the support of a Jordan curve,
take a periodic parametrization σ : R → R3 of C. In both cases, we may write
σ(t) =

(
α(t), 0, β(t)

)
with α(t) > 0 for all t ∈ R, so

S =
{(
α(t) cos θ, α(t) sin θ, β(t)

) ∣∣ t, θ ∈ R
}
.

Define now ϕ : R2 → R3 by setting

ϕ(t, θ) =
(
α(t) cos θ, α(t) sin θ, β(t)

)
,
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(b)(a)

Figure 4. Surfaces of revolution (whole and sections)

so that S = ϕ(R2). If we fix t0 ∈ R, the curve θ 7→ ϕ(t0, θ) is a parallel of S; it is
the circle with radius α(t0) obtained by rotating the point σ(t0) around `. If we fix
θ0 ∈ R, the curve t 7→ ϕ(t, θ0) is a meridian of S; it is obtained rotating C by an
angle θ0 around `.

Now we have

Jacϕ(t, θ) =

∣∣∣∣∣∣
α′(t) cos θ −α(t) sin θ
α′(t) sin θ α(t) cos θ
β′(t) 0

∣∣∣∣∣∣ .
So Jacϕ(t, θ) has rank less than 2 if and only if

α′(t)α(t) = 0 ,

α(t)β′(t) sin θ = 0 ,

α(t)β′(t) cos θ = 0 ,

and this never happens since α is always positive and σ is regular. In particular, ϕ
is an immersed surface having S as its support.

This, however, is not enough to prove that S is a regular surface. To conclude,
we have to consider two cases.

(a) C is not compact, and σ is a global parametrization: see Fig. 4.(a). In
this case, we set ϕ1 = ϕ|R×(0,2π) and ϕ2 = ϕ|R×(−π,π); since the union
of the supports of ϕ1 and ϕ2 is S, if we prove that ϕ1 and ϕ2 are local
parametrizations we are done. Since

ϕ1

(
R× (0, 2π)

)
= S \ {(x, y, z) ∈ R3 | y = 0, x ≥ 0}

is open in S and ϕ1 is the restriction of an immersed surface, to show
that ϕ1 is a local parametrization it suffices to prove that it is a homeo-
morphism with its image. From ϕ1(t, θ) = (x, y, z) we find β(t) = z and

α(t) =
√
x2 + y2. As σ is injective, from this we can find a unique t ∈ I,

and hence a unique θ ∈ (0, 2π), such that x = α(t) cos θ and y = α(t) sin θ;
thus, ϕ1 is invertible. Furthermore, since σ is a homeomorphism with its

image, the coordinate t depends continuously on z and
√
x2 + y2; if we

prove that θ also depends continuously on (x, y, z) we have proved that
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(b)(a)

Figure 5. (a) a torus; (b) a two-sheeted cone

ϕ−1
1 is continuous. Now, if (x, y, z) ∈ S is such that y > 0 we have

0 <
y

x+
√
x2 + y2

=
y/α(t)

1 + x/α(t)
=

sin θ

1 + cos θ
=

sin(θ/2)

cos(θ/2)
= tan

θ

2
,

so

θ = 2 arctan

(
y

x+
√
x2 + y2

)
∈ (0, π)

depends continuously on (x, y, z). Analogously, is (x, y, z) ∈ S is such that
y < 0 we find

θ = 2π + 2 arctan

(
y

x+
√
x2 + y2

)
∈ (π, 2π) ,

and in this case too we are done. Finally, in order to verify that ϕ−1
1 is

continuous in a neighborhood of a point (x0, 0, z0) ∈ ϕ1

(
R× (0, 2π)

)
note

that x0 < 0 necessarily, and that if (x, y, z) ∈ S with x < 0 then

y√
x2 + y2 − x

=
y/α(t)

1− x/α(t)
=

sin θ

1− cos θ
=

cos(θ/2)

sin(θ/2)
= cotan

θ

2
,

so

θ = 2 arccotan

(
y

−x+
√
x2 + y2

)
∈ (π/2, 3π/2) ,

and in this case we are done as well. The proof that ϕ2 is a local
parametrization is completely analogous, so S is a regular surface.

(b) C is compact, and σ is a periodic parametrization with period 2r > 0;
see Fig. 4.(b). In this case set ϕ1 = ϕ|(0,2r)×(0,2π), ϕ2 = ϕ|(0,2r)×(−π,π),
ϕ3 = ϕ|(−r,r)×(0,2π), and ϕ4 = ϕ|(−r,r)×(−π,π); then, arguing as in the
previous case, we immediately see that {ϕ1, ϕ2, ϕ3, ϕ4} is an atlas for S.

Another way to prove that surfaces of revolution are regular surfaces is outlined in
Exercise 2.23.

Example 2.9. A torus is a surface obtained by rotating a circle around an axis
(contained in the plane of the circle) not intersecting it. For instance, if C is the
circle with center (x0, 0, z0) and radius 0 < r0 < |x0| in the xz-plane, then the torus
obtained by rotating C around the z-axis is the support of the immersed surface
ϕ : R2 → R3 given by

ϕ(t, θ) =
(
(r cos t+ x0) cos θ, (r cos t+ x0) sin θ, r sin t+ z0

)
;
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see Fig. 5.(a).

Example 2.10. Let us see now an example of a subset of R3 that is not a
regular surface. The two-sheeted (infinite) cone is the set

S = {(x, y, z) ∈ R3 | x2 + y2 = z2} ;

see Fig. 5.(b). The set S cannot be a regular surface: indeed, if the origin O ∈ S
had in S a neighborhood homeomorphic to an open subset of the plane, then S\{O}
should be connected (why?), but this is not the case. We shall see shortly (Example
2.13) that the one-sheeted infinite cone S ∩ {z ≥ 0} is not a regular surface too,
whereas either connected component of S \ {O} is (Exercise 2.9).

Remark 2.6. We can now show that there are non-compact surfaces that can-
not be the support of a single immersed surface which is also a homeomorphism
with its image. In other words, there exist non-compact regular surfaces not home-
omorphic to an open subset of the plane. Let S ⊂ R3 be the non-compact surface
obtained by removing a point from a torus (Examples 2.7 and 2.9). Then S con-
tains Jordan curves (the meridians of the torus) that do not disconnect it, so it
cannot be homeomorphic to an open subset of the plane without contradicting the
Jordan curve theorem: the complement of a closed simple curve in the plane is not
connected.

We give now a general procedure for building regular surfaces. Let us begin
with a definition:

Definition 2.4. Let V ⊆ Rn be an open set, and F : V → Rm a C∞ map. We
shall say that p ∈ V is a critical point of F if dFp : Rn → Rm is not surjective. We
shall denote the set of critical points of F by Crit(F ). If p ∈ V is a critical point
F (p) ∈ Rm will be called a critical value. A point y ∈ F (V ) ⊆ Rm that is not a
critical value is a regular value.

Remark 2.7. If f : V → R is a C∞ function defined on an open subset V ⊂ Rn
and p ∈ V then dfp : Rn → R is not surjective if and only if it is everywhere zero.
In other words, p ∈ V is a critical point of f if and only if the gradient of f is zero
in p.

Remark 2.8. In a very precise sense, almost every point of the image of a C∞

map is a regular value. Indeed, it can be shown that if F : V → Rm is a function of
class C∞, where V is an open subset of Rn, then the measure of the set of critical
values of F in Rm is zero (Sard’s theorem).

The previous remark explains the vast applicability of the following result (see
also Exercise 2.9):

Proposition 2.1. Let V ⊆ R3 be an open set, and f ∈ C∞(V ). If a ∈ R is a
regular value of f then every connected component of the level set

f−1(a) = {p ∈ V | f(p) = a}
is a regular surface.

Proof. Let p0 = (x0, y0, z0) ∈ f−1(a). Since a is a regular value for f , the
gradient of f is not zero in p0; so, up to permuting the coordinates, we may assume
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Two-sheeted hyperboloid 

Elliptic paraboloid

Ellipsoid

One-sheeted hyperboloid

Hyperbolic paraboloid

Figure 6. Quadrics

that ∂f/∂z(p0) 6= 0. Let now F : V → R3 be given by F (x, y, z) =
(
x, y, f(x, y, z)

)
.

Clearly,

det JacF (p0) =
∂f

∂z
(p0) 6= 0 .

Thus we may apply the inverse function theorem (Theorem 2.1) to get neighbor-

hoods Ṽ ⊆ V of p0 and W ⊆ R3 of F (p0) such that F |Ṽ : Ṽ → W is a diffeomor-
phism. Setting G = (g1, g2, g3) = F−1 we have

(u, v, w) = F ◦G(u, v, w) =
(
g1(u, v, w), g2(u, v, w), f

(
G(u, v, w)

))
.

So g1(u, v, w) ≡ u, g2(u, v, w) ≡ v, and

(20) ∀(u, v, w) ∈W f
(
G(u, v, w)

)
≡ w .

Clearly, the set U = {(u, v) ∈ R2 | (u, v, a) ∈ W} is an open subset of R2, and we
may define ϕ : U → R3 with

ϕ(u, v) = G(u, v, a) =
(
u, v, g3(u, v, a)

)
.

By (20), we know (why?) that ϕ(U) = f−1(a) ∩ Ṽ , and it is straightforward to
verify that ϕ is a local parametrization of f−1(a) at p0. �

Definition 2.5. Let V ⊆ R3 be an open set and f ∈ C∞(V ). Every component
of f−1(a), where a ∈ R is a regular value for f , is a level surface of f .

Example 2.11. The ellipsoid having equation

x2

a2
+
y2

b2
+
z2

c2
= 1

with a, b, c > 0 is a regular surface. Indeed, it is of the form f−1(1), where
f : R3 → R is given by

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
.

Since ∇f =
(
2x/a2, 2y/b2, 2z/c2

)
, the only critical point of f is the origin, the only

critical value of f is 0, and so f−1(1) is a level surface.
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Example 2.12. More in general, a quadric is the subset of R3 of the points
that are solutions of an equation of the form p(x, y, z) = 0, where p is a poly-
nomial of degree 2. Not all quadrics are regular surfaces (see Example 2.10 and
Problem 2.4), but the components of those that are provide a good repertory of
examples of surfaces. Besides the ellipsoid, we have the two-sheeted (or elliptic)
hyperboloid of equation (x/a)2 + (y/b)2− (z/c)2 + 1 = 0, the one-sheeted (or hyper-
bolic) hyperboloid of equation (x/a)2+(y/b)2−(z/c)2−1 = 0, the elliptic paraboloid
having equation (x/a)2 + (y/b)2− z = 0, the hyperbolic paraboloid having equation
(x/a)2 − (y/b)2 − z = 0, and cylinders having a conic section as generatrix (see
Problem 2.3). Fig. 6 shows some quadrics.

We end this section with two general results.

Proposition 2.2. Every regular surface is locally a graph. In other words, if
S ⊂ R3 is a regular surface and p ∈ S then there exists a local parametrization
ϕ : U → S in p of one of the following forms:

ϕ(x, y) =


(
x, y, f(x, y)

)
, or(

x, f(x, y), y
)
, or(

f(x, y), x, y
)
,

for a suitable f ∈ C∞(U). In particular, there is always an open neighborhood
Ω ⊆ R3 of S such that S is closed in Ω.

Proof. Let ψ = (ψ1, ψ2, ψ3) : U1 → R3 be a local parametrization centered
at p. Up to permuting coordinates, we may assume that

det

(
∂ψh
∂xk

(O)

)
h,k=1,2

6= 0 ;

so, setting F = (ψ1, ψ2) we may find a neighborhood V ⊆ U1 of O and a neighbor-
hood U ⊆ R2 of F (O) such that F |V : V → U is a diffeomorphism. Let F−1 : U → V
be the inverse map, and set f = ψ3 ◦ F−1 : U → R. Since we have F ◦ F−1 = idU ,
we get

ψ ◦ F−1(u, v) =
(
u, v, f(u, v)

)
,

so ϕ = ψ ◦ F−1 : U → R3 is a local parametrization of S at p of the required form.
Finally, for all p ∈ S let Wp ⊂ R3 be an open neighborhood of p such that Wp∩S is a
graph. Then Wp∩S is closed in Wp, and so S is closed (why?) in Ω =

⋃
p∈SWp. �

The converse of this result holds too: every set that is locally a graph is a
regular surface (Exercise 2.11).

Example 2.13. The one-sheeted infinite cone

S = {(x, y, z) ∈ R3 | z =
√
x2 + y2}

is not a regular surface. If it were, it should be the graph of a C∞ function in a
neighborhood of (0, 0, 0). As the projections on the xz-plane and yz-plane are not
injective, it should be a graph over the xy-plane; but in this case it should be the

graph of the function
√
x2 + y2, which is not of class C∞.

And at last, here is the result promised in Example 2.6:

Proposition 2.3. Let S ⊂ R3 be a regular surface, U ⊆ R2 an open subset,
and ϕ : U → R3 an immersed surface with support contained in S. Then:
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(i) ϕ(U) is open in S;
(ii) if ϕ is injective then for all p ∈ ϕ(U) there exist a neighborhood W ⊂ R3

of p in R3 with W ∩ S ⊆ ϕ(U), and a map Φ: W → R2 of class C∞ such
that Φ(W ) ⊆ U and Φ|W∩S ≡ ϕ−1|W∩S. In particular, ϕ−1 : ϕ(U) → U
is continuous, so ϕ is a local parametrization of S.

Proof. Let p = ϕ(x0, y0) ∈ ϕ(U). As S is a surface, we can find a neighbor-
hood W0 of p in R3 such that W0 ∩ S is a graph; to fix ideas, say that W0 ∩ S is
the graph over the xy-plane of a function f . If π : R3 → R2 is the projection on
the xy-plane, set U0 = ϕ−1(W0) ⊆ U and h = π ◦ ϕ : U0 → R2. For (x, y) ∈ U0 we
have ϕ3(x, y) = f

(
ϕ1(x, y), ϕ2(x, y)

)
, and so the third row of the Jacobian matrix

of ϕ in (x, y) is a linear combination of the first two. Since the differential of ϕ is
supposed to have rank 2 everywhere, it follows that the first two rows of the Jaco-
bian matrix of ϕ have to be linearly independent, and so Jach(x, y) is invertible.
The inverse function theorem (Theorem 2.1) then yields a neighborhood U1 ⊆ U0 of
(x0, y0) and a neighborhood V1 ⊆ R2 of h(x0, y0) = π(p) such that h|U1

: U1 → V1

is a diffeomorphism. In particular, ϕ(U1) = ϕ ◦ h|−1
U1

(V1) = (π|S∩W0
)−1(V1) is open

in S, so ϕ(U) is a neighborhood of p in S. Since p is arbitrary, it follows that ϕ(U)
is open in S, and (i) is proved.

Suppose now that ϕ is injective, so ϕ−1 : ϕ(U) → U is defined. As ϕ(U)
is open in S, up to restricting W0 we may assume that W0 ∩ S ⊆ ϕ(U). Set
W = W0 ∩ π−1(V1) and Φ = h|−1

U1
◦ π; to complete the proof of (ii) it remains to

show that Φ|W∩S ≡ ϕ−1|W∩S .
Let q ∈ W ∩ S. As q ∈ W0 ∩ π−1(V1), we can find a point (u, v) ∈ V1 such

that q =
(
u, v, f(u, v)

)
. On the other hand, being q ∈ ϕ(U) there is a unique

point (x, y) ∈ U such that q = ϕ(x, y). But then (u, v) = π(q) = h(x, y); so
(x, y) = h|−1

U1
(u, v) ∈ U1 and ϕ−1(q) = (x, y) = h|−1

U1
◦ π(q) = Φ(q), as required. �

In other words, if we already know that S is a surface, to verify whether a map
ϕ : U → R3 from an open subset U of R2 to S is a local parametrization it suffices
to check that ϕ is injective and that dϕx has rank 2 for all x ∈ U .

Remark 2.9. The previous proposition and Lemma 2.1 might suggest that
a claim along the following lines might be true: “Let ϕ : U → R3 be an injec-
tive immersed surface with support S = ϕ(U). Then for all p ∈ ϕ(U) we can
find a neighborhood W ⊂ R3 of p in R3 and a map Φ: W → R2 of class C∞

such that Φ(W ) ⊆ U and Φ|W∩S ≡ ϕ−1|W∩S . In particular, ϕ−1 : ϕ(U) → U is
continuous, and S is a regular surface.” We have even a “proof” of this claim:
“Since, by assumption, ϕ is an immersed surface, we may apply Lemma 2.1. Let
p = ϕ(x0) ∈ ϕ(U), and G : Ω → W the diffeomorphism provided by Lemma 2.1;
up to restricting Ω, we may also assume that Ω = U1 × (−δ, δ), where δ > 0 and
U1 ⊆ U is a suitable neighborhood of x0. Then Φ = π ◦ G−1, where π : R3 → R2

is the projection on the first two coordinates, is as required. Indeed, for all
q ∈ W ∩ ϕ(U) the point G−1(q) = (y, t) ∈ Ω is the only one satisfying G(y, t) = q.
But G

(
ϕ−1(q), 0

)
= ϕ

(
ϕ−1(q)

)
= q, so G−1(q) =

(
ϕ−1(q), 0

)
, and we are done.”

However, the claim is false and this proof is wrong.
The (subtle) error in the proof is that if q ∈ W ∩ ϕ(U) then ϕ−1(q) does

not necessarily belong to U1, and so
(
ϕ−1(q), 0

)
does not belong to the domain

of G; hence we cannot say that G
(
ϕ−1(q), 0

)
= ϕ

(
ϕ−1(q)

)
= q or deduce that

G−1(q) =
(
ϕ−1(q), 0

)
. Of course, the claim might be true even if this particular
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proof is wrong. But the claim is false indeed, and in Example 2.14 you’ll find a
counterexample.

Summing up, we may deduce the continuity of the inverse of a globally injective
immersed surface ϕ only if we already know that the image of ϕ lies within a regular
surface; otherwise, it might be false.

Example 2.14. Let ϕ : (−1,+∞)×R→ R3 be the immersed surface of Exam-
ple 2.1. We have already remarked that ϕ is an injective immersed surface that is
not a homeomorphism with its image, and it is immediate to notice that its support
S is not a regular surface, since in a neighborhood of the point (0, 0, 0) ∈ S none
of the three projections on the coordinate planes is injective, and so S cannot be
locally a graph.

2.2. Smooth functions

Local parametrizations are the tool that allows us to give concrete form to the
idea that a surface locally resembles an open subset of the plane; let us see how to
use them to determine when a function defined on a surface is smooth.

Definition 2.6. Let S ⊂ R3 be a surface, and p ∈ S. A function f : S → R
is of class C∞ (or smooth) at p if there exists a local parametrization ϕ : U → S
at p such that f ◦ ϕ : U → R is of class C∞ in a neighborhood of ϕ−1(p). We shall
say that f is of class C∞ (or smooth) if it is so at every point. The space of C∞

functions on S will be denoted by C∞(S).

Remark 2.10. A smooth function f : S → R is automatically continuous.
Indeed, let I ⊆ R be an open interval, and p ∈ f−1(I). By assumption, there is
a local parametrization ϕ : U → S at p such that f ◦ ϕ is of class C∞ (and thus
continuous) in a neighborhood of ϕ−1(p). Then (f ◦ ϕ)−1(I) = ϕ−1

(
f−1(I)

)
is a

neighborhood of ϕ−1(p). But ϕ is a homeomorphism with its image; so f−1(I)
has to be a neighborhood of ϕ

(
ϕ−1(p)

)
= p. Since p was arbitrary, it follows that

f−1(I) is open in S, and so f is continuous.

A possible problem with this definition is that it might depend on the partic-
ular local parametrization we have chosen: a priori, there might be another local
parametrization ψ at p such that f ◦ ψ is not smooth in ψ−1(p). Luckily, the
following theorem implies that this cannot happen.

Theorem 2.2. Let S be a surface, and let ϕ : U → S, ψ : V → S be two local
parametrizations with Ω = ϕ(U) ∩ ψ(V ) 6= ∅. Then the map

h = ϕ−1 ◦ ψ|ψ−1(Ω) : ψ−1(Ω)→ ϕ−1(Ω)

is a diffeomorphism.

Proof. The map h is a homeomorphism, as it is a composition of homeomor-
phisms; we have to show that it and its inverse are of class C∞.

Let x0 ∈ ψ−1(Ω), y0 = h(x0) ∈ ϕ−1(Ω), and p = ψ(x0) = ϕ(y0) ∈ Ω. Propo-
sition 2.3 provides us with a neighborhood W of p ∈ R3 and a map Φ: W → R2

of class C∞ such that Φ|W∩S ≡ ϕ−1. Now, by the continuity of ψ, there is a
neighborhood V1 ⊂ ψ−1(Ω) of x0 such that ψ(V1) ⊂ W . Then h|V1 = Φ ◦ ψ|V1 ,
and so h is of class C∞ in x0. Since x0 is an arbitrary element, h is of class C∞

everywhere. In an analogous way it can be proved that h−1 is of class C∞, and so
h is a diffeomorphism. �
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Corollary 2.2. Let S ⊂ R3 be a surface, f : S → R a function, and p ∈ S. If
there is a local parametrization ϕ : U → S at p such that f ◦ ϕ is of class C∞ in a
neighborhood of ϕ−1(p), then f ◦ ψ is of class C∞ in a neighborhood of ψ−1(p) for
all local parametrization ψ : V → S of S at p.

Proof. We may write

f ◦ ψ = (f ◦ ϕ) ◦ (ϕ−1 ◦ ψ) ,

and thus the previous theorem implies that f ◦ψ is of class C∞ in a neighborhood
of ψ−1(p) if and only if f ◦ ϕ is of class C∞ in a neighborhood of ϕ−1(p). �

So the being smooth on a surface is a property of the function, and does not
depend on local parametrizations; to test whether a function is smooth we may use
an arbitrary local parametrization.

Using the same approach, we may define the notion of smooth map between
two surfaces:

Definition 2.7. If S1, S2 ⊂ R3 are two surfaces, we shall say that a map
F : S1 → S2 is of class C∞ (or smooth) at p ∈ S1 if there exist a local parametriza-
tion ϕ1 : U1 → S1 in p and a local parametrization ϕ2 : U2 → S2 in F (p) such
that ϕ−1

2 ◦ F ◦ ϕ1 is of class C∞ (where defined). We shall say that F is of class
C∞ (or smooth) if it so at every point. If F is of class C∞ and invertible with
inverse of class C∞ we shall say that F is a diffeomorphism, and that S1 and S2

are diffeomorphic.

Remark 2.11. The notion of smooth map defined on an open subset of Rn
with values in a surface, or from a surface with values in Rn, can be introduced in
an analogous way (see Exercise 2.20).

It is easy to prove that the definition of smooth map does not depend on
the local parametrizations used (Exercise 2.38), that smooth maps are continuous
(Exercise 2.37), and that a composition of smooth maps is smooth:

Proposition 2.4. If F : S1 → S2 and G : S2 → S3 are smooth maps between
surfaces, then the composition G ◦ F : S1 → S3 is smooth as well.

Proof. Fix p ∈ S1 and choose an arbitrary local parametrization ϕ1 : U1 → S1

of S1 at p, a local parametrization ϕ2 : U2 → S2 of S2 at F (p), and a local
parametrization ϕ3 : U3 → S3 of S3 at G

(
F (p)

)
. Then

ϕ−1
3 ◦ (G ◦ F ) ◦ ϕ1 = (ϕ−1

3 ◦G ◦ ϕ2) ◦ (ϕ−1
2 ◦ F ◦ ϕ1)

is of class C∞ where defined, and we are done. �

Example 2.15. A local parametrization ϕ : U → ϕ(U) ⊂ S is a diffeomorphism
between U and ϕ(U). Indeed, first of all, it is invertible by definition. Next, to
test the differentiability of ϕ and ϕ−1 we can use the identity map id as local
parametrization of U , and ϕ itself as local parametrization of S. So it suffices to
verify that ϕ−1 ◦ ϕ ◦ id and id ◦ϕ−1 ◦ ϕ are of class C∞, which is straightforward.

Example 2.16. If U ⊂ Rn is open and F : U → R3 is a C∞ map whose image
is contained in a surface S then F is of class C∞ as an S-valued map as well.
Indeed, let ψ be a local parametrization at a point p ∈ F (U); Proposition 2.3 tells
us that there exists a function Ψ of class C∞ defined in a neighborhood of p such
that ψ−1 ◦ F = Ψ ◦ F , and the latter composition is of class C∞.
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Example 2.17. If S ⊂ R3 is a surface, then the inclusion ι : S ↪→ R3 is of class
C∞. Indeed, saying that ι is of class C∞ is exactly equivalent (why?) to saying
that local parametrizations are of class C∞ when considered as maps with values
in R3.

Example 2.18. If Ω ⊆ R3 is an open subset of R3 that contains the sur-
face S, and f̃ ∈ C∞(Ω), then the restriction f = f̃ |S is of class C∞ on S. Indeed,

f ◦ ϕ = f̃ ◦ ϕ is of class C∞ for every local parametrization ϕ.

Actually, it is possible to prove that the previous example provides all C∞

functions on a surface S. However, for our purposes, it is sufficient a local version
of this result:

Proposition 2.5. Let S ⊂ R3 be a surface, and take p ∈ S. Then a func-
tion f : S → R is of class C∞ at p if and only if there exist an open neighborhood
W ⊆ R3 of p in R3 and a function f̃ ∈ C∞(W ) such that f̃ |W∩S ≡ f |W∩S.

Proof. One implication is given by Example 2.18. For the converse, suppose
that f is of class C∞ at p, and let ϕ : U → S be a local parametrization centered
at p. Proposition 2.3.(ii) provides us with a neighborhood W of p in R3 and a map
Φ: W → R2 of class C∞ such that Φ(W ) ⊆ U and ΦW∩S ≡ ϕ−1|W∩S . Then the

function f̃ = (f ◦ ϕ) ◦ Φ ∈ C∞(W ) is as required. �

2.3. Tangent plane

We have seen that tangent vectors play a major role in the study of curves.
In this section we intend to define the notion of a tangent vector to a surface at a
point. The geometrically simplest way is as follows:

Definition 2.8. Let S ⊆ R3 be a set, and p ∈ S. A tangent vector to S at p
is a vector of the form σ′(0), where σ : (−ε, ε) → R3 is a curve of class C∞ whose
support lies in S and such that σ(0) = p. The set of all possible tangent vectors
to S at p is the tangent cone TpS to S at p.

Remark 2.12. A cone (with the origin as vertex) in a vector space V is a subset
C ⊆ V such that av ∈ C for all a ∈ R and v ∈ C. It is not difficult to verify that
the tangent cone to a set is in fact a cone in this sense. Indeed, first of all, the zero
vector is the tangent vector to a constant curve, so O ∈ TpS for all p ∈ S. Next, if
a ∈ R∗ and O 6= v ∈ TpS, if we choose a curve σ : (−ε, ε) → S with σ(0) = p and
σ′(0) = v, then the curve σa : (−ε/|a|, ε/|a|) → S given by σa(t) = σ(at) is such
that σa(0) = p and σ′a(0) = av; so av ∈ TpS as required by the definition of cone.

Example 2.19. If S ⊂ R3 is the union of two straight lines through the origin,
it is straightforward to verify (check it) that TOS = S.

The advantage of this definition of tangent vector is the clear geometric mean-
ing. If S is a surface, however, our geometric intuition tells us that TpS should be a
plane, not just a cone. Unfortunately, this is not so evident from the definition: the
sum of two curves in S is not necessarily a curve in S, and so the “obvious” way of
proving that the sum of two tangent vectors is a tangent vector does not work. On
the other hand, the previous examples shows that if S is not a surface the tangent
cone has no reason to be a plane; so, in order to get such a result, we have to fully
exploit the definition of a surface, that is, we must involve local parametrizations.
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Let us begin by seeing what happens in the simplest case, that of open sets in
the plane:

Example 2.20. Let U ⊆ R2 be an open set, and p ∈ U . Every curve contained
in U is plane, and so the tangent vectors to U at p lie necessarily in R2. Conversely,
if v ∈ R2 then the curve σ : (−ε, ε) → V given by σ(t) = p + tv has its support
within U for ε small enough, and has v as its tangent vector. So we have proved
that TpU = R2.

Applying the usual strategy of using local parametrizations to carry notions
from open subsets of the plane to surfaces, we get the following:

Proposition 2.6. Let S ⊂ R3 be a surface, p ∈ S, and ϕ : U → S a local
parametrization at p with ϕ(xo) = p. Then dϕxo is an isomorphism between R2

and TpS. In particular, TpS = dϕx0(R2) is always a vector space of dimension 2,

and dϕxo(R
2) does not depend on ϕ but only on S and p.

Proof. Given v ∈ R2, we may find ε > 0 such that xo + tv ∈ U for all
t ∈ (−ε, ε); so the curve σv : (−ε, ε) → S given by σv(t) = ϕ(xo + tv) is well
defined. Since σv(0) = p and σ′v(0) = dϕxo(v), it follows that dϕxo(R

2) ⊆ TpS.
Vice versa, let σ : (−ε, ε) → S be a curve such that σ(0) = p; up to taking a

smaller ε, we may assume that the support of σ is contained in ϕ(U). Proposi-
tion 2.3.(ii) ensures that the composition σo = ϕ−1 ◦ σ is a C∞ curve in U such
that σo(0) = xo; set v = σ′o(0) ∈ R2. Then

dϕxo(v) =
d(ϕ ◦ σo)

dt
(0) = σ′(0) ,

and so TpS ⊆ dϕxo(R
2). Hence, dϕxo : R2 → TpS is surjective; since it is injective

too, it is an isomorphism between R2 and TpS. �

Definition 2.9. Let S ⊂ R3 be a surface, and take p ∈ S. The vector
space TpS ⊂ R3 is the tangent plane to S at p.

Remark 2.13. Warning: according to our definition, the tangent plane is a
vector subspace of R3, and so it passes through the origin, no matter where the
point p ∈ S is. When we draw the tangent plane as a plane resting on the surface,
we are not actually drawing TpS, but rather the plane p+TpS parallel to it, which
is the affine tangent plane through p.

Remark 2.14. It is apparent from the definition that if S ⊂ R3 is a surface,
p ∈ S and U ⊆ S is an open subset of S containing p, then TpU = TpS. In

particular, if S = R2 then TpU = TpR2 = R2 for every open set U of the plane and
every p ∈ U .

The isomorphism between R2 and TpS provided by the local parametrizations
allows us to consider special bases of the tangent plane:

Definition 2.10. Let S ⊂ R3 be a surface, and p ∈ S. If ϕ : U → S is a local
parametrization centered at p, and {~e1, ~e2} is the canonical basis of R2, then the
tangent vectors ∂/∂x1|p, ∂/∂x2|p ∈ TpS (the reasons behind this notation will be
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made clear in Remark 2.19) are defined by setting

∂

∂xj

∣∣∣∣
p

= dϕO(~ej) =
∂ϕ

∂xj
(O) =

∣∣∣∣∣∣∣∣
∂ϕ1

∂xj
(O)

∂ϕ2

∂xj
(O)

∂ϕ3

∂xj
(O)

∣∣∣∣∣∣∣∣ .
We shall often write ∂j |p (or even, when no confusion may arise, simply ∂j) rather
than ∂/∂xj |p. Clearly, {∂1|p, ∂2|p} is a basis of TpS, the basis induced by the local
parametrization ϕ. Note that ∂1|p and ∂2|p are just the two columns of the Jacobian
matrix of ϕ computed in O = ϕ−1(p). Finally, a curve in S tangent to ∂j |p is the
j-th coordinate curve σ : (−ε, ε)→ S given by σ(t) = ϕ(t~ej) for ε small enough.

We have seen that a possible way to define surfaces is as level surfaces of a
smooth function. The following proposition tells us how to find the tangent plane
in this case:

Proposition 2.7. Let U ⊆ R3 an open set, and a ∈ R a regular value of a
function f ∈ C∞(U). If S is a connected component of f−1(a) and p ∈ S, the
tangent plane TpS is the subspace of R3 orthogonal to ∇f(p).

Proof. Take v = (v1, v2, v3) ∈ TpS and let σ : (−ε, ε) → S be a curve with
σ(0) = p and σ′(0) = v. Differentiating f ◦ σ ≡ a and evaluating in 0 we find

∂f

∂x1
(p)v1 +

∂f

∂x2
(p)v2 +

∂f

∂x3
(p)v3 = 0 ,

and so v is orthogonal to ∇f(p). Hence TpS is contained in the subspace orthogonal
to ∇f(p); but both spaces have dimension 2, and so they coincide. �

Let us now see some examples of tangent planes.

Example 2.21. Let H ⊂ R3 be a plane through a point p0 ∈ R3, and denote
by H0 = H − p0 ⊂ R3 the plane through the origin and parallel to H. Since the
tangent vectors to curves with support in H must belong to H0 (see the proof of
Proposition 1.4), we obtain Tp0H = H0.

Example 2.22. Let p0 = (x0, y0, z0) ∈ S2 be a point of the unit sphere S2 (see
Example 2.5). If we set f(x, y, z) = x2 + y2 + z2, by Proposition 2.7 Tp0S

2 is the
subspace orthogonal to ∇f(p0) = (2x0, 2y0, 2z0) = 2p0. So, the tangent plane to
a sphere at a point is always orthogonal to the radius in that point. If z0 > 0, by
using the local parametrization ϕ1 from Example 2.5, we find that a basis of Tp0S

2

consists of the vectors

∂

∂x

∣∣∣∣
p0

=
∂ϕ1

∂x
(x0, y0) =

∣∣∣∣∣∣∣
1
0
−x0√

1−x2
0−y20

∣∣∣∣∣∣∣ ,
∂

∂y

∣∣∣∣
p0

=
∂ϕ1

∂y
(x0, y0) =

∣∣∣∣∣∣∣
0
1
−y0√

1−x2
0−y20

∣∣∣∣∣∣∣ .
The basis induced by the local parametrization given by the spherical coordinates
(Example 2.6), on the other hand, consists of the vectors

∂

∂θ

∣∣∣∣
p0

=

∣∣∣∣∣∣
cos θ cosφ
cos θ sinφ
− sin θ

∣∣∣∣∣∣ and
∂

∂φ

∣∣∣∣
p0

=

∣∣∣∣∣∣
− sin θ sinφ
sin θ cosφ

0

∣∣∣∣∣∣ .
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Example 2.23. Let Γf ⊂ R3 be the graph of a function f ∈ C∞(U). Using
Proposition 2.6 and the local parametrization from Example 2.3 we see that a basis
of the tangent plane to Γf at the point p =

(
x1, x2, f(x1, x2)

)
∈ Γf consist of the

vectors

∂

∂x1

∣∣∣∣
p

=

∣∣∣∣∣∣
1
0

∂f
∂x1

(x1, x2)

∣∣∣∣∣∣ , ∂

∂x2

∣∣∣∣
p

=

∣∣∣∣∣∣
0
1

∂f
∂x2

(x1, x2)

∣∣∣∣∣∣ .
Example 2.24. Let S ⊂ R3 be the surface of revolution obtained by rotating

around the z-axis a Jordan curve (or open arc) C contained in the right half-plane
of the xz-plane. Let σ : R → R3 be a global or periodic parametrization of C
of the form σ(t) =

(
α(t), 0, β(t)

)
, and ϕ : R2 → R3 the immersed surface with

support S introduced in Example 2.8. By Proposition 2.3.(ii), we know that every
restriction of ϕ to an open set on which it is injective is a local parametrization
of S; so Proposition 2.6 implies that TpS = dϕ(t,θ)(R2) for all p = ϕ(t, θ) ∈ S. In
particular, a basis of the tangent plane at p consists of the vectors

∂

∂t

∣∣∣∣
p

=
∂ϕ

∂t
(t, θ) =

∣∣∣∣∣∣
α′(t) cos θ
α′(t) sin θ
β′(t)

∣∣∣∣∣∣ , ∂

∂θ

∣∣∣∣
p

=
∂ϕ

∂θ
(t, θ) =

∣∣∣∣∣∣
−α(t) sin θ
α(t) cos θ

0

∣∣∣∣∣∣ .
Example 2.25. A second degree polynomial p in three variables can always

be written in the form p(x) = xTAx + 2bTx + c, where A = (aij) ∈ M3,3(R) is a

symmetric matrix, b ∈ R3 (we are writing vectors in R3 as column vectors), and
c ∈ R. In particular, ∇p(x) = 2(Ax + b). So, if S ⊂ R3 is the component of the
quadric having equation p(x) = 0 that contains the point x0 /∈ Crit(p), the tangent
plane Tx0

S to the surface S (see Exercise 2.9) at x0 is given by

Tx0
S = {v ∈ R3 | 〈Ax0 + b, v〉 = 0} .

For instance, the tangent plane at the point x0 = (1, 0, 1) to the one-sheeted hyper-
boloid with equation x2+y2−z2−1 = 0 is the plane {v = (v1, v2, v3) ∈ R3 | v1 = v3}.

2.4. Tangent vectors and derivations

Definition 2.9 of tangent plane is not completely satisfactory: it strongly de-
pends on the fact that the surface S is contained in R3, while it would be nice to
have a notion of tangent vector intrinsic to S, independent of its embedding in the
Euclidean space. In other words, we would like to have a definition of TpS not

as a subspace of R3, but as an abstract vector space, depending only on S and p.
Moreover, since we are dealing with “differential geometry”, sooner or later we shall
have to find a way to differentiate on a surface.

Surprisingly enough, we may solve both these problems at the same time. The
main idea is contained in the following example.

Example 2.26. Let U ⊆ R2 be an open set, and p ∈ U . Then we can associate
with each tangent vector v ∈ TpU = R2 a partial derivative:

v = (v1, v2) 7→ ∂

∂v

∣∣∣∣
p

= v1
∂

∂x1

∣∣∣∣
p

+ v2
∂

∂x2

∣∣∣∣
p

,

and all partial derivatives are of this kind. So, in a sense, we may identify TpU
with the set of partial derivatives.
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Our aim will then be to find a way for identifying, for general surfaces, tangent
vectors with the right kind of partial derivative. To do so, we must first of all
understand better which objects we want to differentiate. The key observation is
that to differentiate a function in a point it suffices to know its behaviour in a
neighborhood of the point; if our goal is just to differentiate at p, two functions
that coincide in some neighborhood of p are completely equivalent. This remark
suggests the following

Definition 2.11. Let S ⊂ R3 be a surface, and p ∈ S. Denote by F the set
of pairs (U, f), where U ⊆ S is an open neighborhood of p in S and f ∈ C∞(U).
We define an equivalence relation ∼ on F as follows: (U, f) ∼ (V, g) if there exists
an open neighborhood W ⊆ U ∩ V of p such that f |W ≡ g|W . The quotient space
C∞(p) = F/∼ is the space (or stalk) of germs of C∞ functions at p, and an
element f ∈ C∞(p) is a germ at p. An element (U, f) of the equivalence class f
is a representative of f . If it is necessary to remind the surface on which we are
working, we shall write C∞S (p) rather than C∞(p).

Remark 2.15. If U ⊆ S is an open subset of a surface S and p ∈ U then we
clearly have C∞U (p) = C∞S (p).

So, what we really want to differentiate are germs of C∞ functions. Before
seeing how to do this, note that C∞(p) has a natural algebraic structure.

Definition 2.12. An algebra over a field K is a set A equipped with an addition
+, a multiplication · and a multiplication by scalars λ·, such that (A,+, ·) is a ring,
(A,+, λ·) is a vector space, and the associative property (λf)g = λ(fg) = f(λg)
holds, for all λ ∈ K and f , g ∈ A.

Lemma 2.2. Let S ⊂ R3 be a surface, p ∈ S, and f , g ∈ C∞(p) two germs
at p. Let also (U1, f1), (U2, f2) be two representatives of f , and (V1, g1), (V2, g2)
two representatives of g. Then:

(i) (U1 ∩ V1, f1 + g1) is equivalent to (U2 ∩ V2, f2 + g2);
(ii) (U1 ∩ V1, f1g1) is equivalent to (U2 ∩ V2, f2g2);

(iii) (U1, λf1) is equivalent to (U2, λf2) for all λ ∈ R;
(iv) f1(p) = f2(p).

Proof. Let us begin with (i). Since (U1, f1) ∼ (U2, f2), there exists an
open neighborhood Wf ⊆ U1 ∩ U2 of p such that f1|Wf

≡ f2|Wf
. Analogously,

since (V1, g1) ∼ (V2, g2), there exists an open neighborhood Wg ⊆ V1 ∩ V2 di p
such that g1|Wg ≡ g2|Wg . But then (f1 + f2)|Wf∩Wg ≡ (g1 + g2)|Wf∩Wg , and
so (U1 ∩ V1, f1 + g1) ∼ (U2 ∩ V2, f2 + g2) as Wf ∩Wg ⊆ U1 ∩ V1 ∩ U2 ∩ V2.

The proof of (ii) is analogous, and (iii) and (iv) are straightforward. �

Definition 2.13. Let f , g ∈ C∞(p) be two germs at a point p ∈ S. We shall
denote by f + g ∈ C∞(p) the germ represented by (U ∩ V, f + g), where (U, f)
is an arbitrary representative of f and (V, g) is an arbitrary representative of g.
Analogously, we denote by fg ∈ C∞(p) the germ represented by (U ∩ V, fg), and,
given λ ∈ R, by λf ∈ C∞(p) the germ represented by (U, λf). Lemma 2.2 tells us
that these objects are well defined, and it is straightforward (why?) to verify that
C∞(p) with these operations is an algebra. Finally, for all f ∈ C∞(p) we define
its value f(p) ∈ R in p by setting f(p) = f(p) for an arbitrary representative (U, f)
of f ; Lemma 2.2 again implies that f(p) is well defined.
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The fact that the composition of smooth maps is itself a smooth map allows us
to compare stalks in different points of different surfaces. Indeed, let F : S1 → S2

be a C∞ map between surfaces, and let (V1, g1) and (V2, g2) be two representa-
tives of a germ g ∈ C∞

(
F (p)

)
. Then it is clear (exercise) that

(
F−1(V1), g1 ◦ F

)
and

(
F−1(V2), g2 ◦ F

)
represent the same germ at p, which, then, depends on g

(and on F ) only.

Definition 2.14. Let F : S1 → S2 be a smooth map between surfaces, and
take p ∈ S1. We shall denote by F ∗p : C∞S2

(
F (p)

)
→ C∞S1

(p) the map associating with

a germ g ∈ C∞S2

(
F (p)

)
having (V, g) as a representative the germ F ∗p (g) ∈ C∞S1

(p)

having
(
F−1(V ), g ◦F

)
as a representative. We shall sometimes write g ◦F rather

than F ∗p (g). It is immediate to see (exercise) that F ∗p is an algebra homomorphism.

Remark 2.16. A very common (and very useful) convention in contemporary
mathematics consists in denoting by a star written as a superscript (as in F ∗p ) a
map associated in a canonical way with a given map, but going in the opposite
direction: F is a function from S1 to S2, whereas F ∗ is a function from the germs
in S2 to the germs in S1. The same convention uses a star as a subscript (as in F∗)
to denote an associated map going in the same direction as the given one (see for
instance Definitions 2.16 and 2.17 later on).

Lemma 2.3.

(i) We have (idS)∗p = id for all points p of a surface S.
(ii) Let F : S1 → S2 and G : S2 → S3 be two C∞ maps between surfaces. Then

(G ◦ F )∗p = F ∗p ◦G∗F (p) for all p ∈ S1.

(iii) If F : S1 → S2 is a diffeomorphism, then F ∗p : C∞
(
F (p)

)
→ C∞(p) is an

algebra isomorphism for all p ∈ S1. In particular, if ϕ : U → S is a local
parametrization with ϕ(xo) = p ∈ S, then ϕ∗xo : C∞S (p) → C∞U (xo) is an
algebra isomorphism.

Proof. (i) Obvious.

(ii) Follows immediately (exercise) from the equality g ◦ (G ◦ F ) = (g ◦G) ◦ F .

(iii) Indeed (F−1)∗F (p) is the inverse of F ∗p , by (i) and (ii). �

Now we can define what we mean by a partial derivative on a surface.

Definition 2.15. Let S ⊂ R3 be a surface, and p ∈ S. A derivation at p is a
R-linear function D : C∞(p)→ R satisfying a Leibniz (or product) rule:

D(fg) = f(p)D(g) + g(p)D(f) .

It is immediate to verify (exercise) that the set D
(
C∞(p)

)
of derivations of C∞(p)

is a vector subspace of the dual space (as a vector space) of C∞(p).

Example 2.27. Let U ⊂ R2 be an open subset of the plane, and p ∈ U . We
have already remarked that TpU = R2. On the other hand, the partial derivatives
at p are clearly derivations of C∞(p); so we may introduce a natural linear map
α : TpU → D

(
C∞(p)

)
by setting

α(v) =
∂

∂v

∣∣∣∣
p

= v1
∂

∂x1

∣∣∣∣
p

+ v2
∂

∂x2

∣∣∣∣
p

.
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The key point here is that the map α is actually an isomorphism between TpU
and D

(
C∞(p)

)
. Moreover, we shall show that TpS and D

(
C∞S (p)

)
are canonically

isomorphic for every surface S and for every p ∈ S, and this fact will provide us
with the desired intrinsic characterization of the tangent plane. To prove all this
we need one more definition and a lemma.

Definition 2.16. Let S ⊂ R3 be a surface, and p ∈ S. Given a local
parametrization ϕ : U → S in p with ϕ(xo) = p ∈ S, define a map

ϕ∗ : D
(
C∞(xo)

)
→ D

(
C∞(p)

)
by setting ϕ∗(D) = D ◦ ϕ∗xo , that is,

ϕ∗(D)(f) = D(f ◦ ϕ)

for all f ∈ C∞(p) and D ∈ D
(
C∞(xo)

)
. It is immediate to verify (check it!) that

ϕ∗(D) is a derivation, since ϕ∗xo is an algebra isomorphism, and so the image of ϕ∗
is actually contained in D

(
C∞(p)

)
. Moreover, it is easy to see (exercise) that ϕ∗ is

a vector space isomorphism, with (ϕ∗)
−1(D) = D ◦ (ϕ−1)∗p as its inverse.

Remark 2.17. We shall see later on (Remark 2.18) that ϕ∗ can be canonically
identified with the differential of the local parametrization.

Lemma 2.4. Let U ⊆ Rn be an open domain star-shaped with respect to xo ∈ Rn.
Then for all f ∈ C∞(U) there exist g1, . . . , gn ∈ C∞(U) such that gj(x

o) = ∂f
∂xj

(xo)

and

f(x) = f(xo) +

n∑
j=1

(xj − xoj)gj(x)

for all x ∈ U .

Proof. We have

f(x)− f(xo) =

∫ 1

0

∂

∂t
f
(
xo + t(x− xo)

)
dt

=

n∑
j=1

(xj − xoj)
∫ 1

0

∂f

∂xj

(
xo + t(x− xo)

)
dt ,

so it suffices to define

gj(x) =

∫ 1

0

∂f

∂xj

(
xo + t(x− xo)

)
dt .

and we are done. �

We may now prove the characterization of the tangent plane we promised:

Theorem 2.3. Let S ⊂ R3 be a surface, and p ∈ S. Then the tangent plane
TpS is canonically isomorphic to the space D

(
C∞(p)

)
of derivations of C∞(p).

Proof. Let ϕ : U → S be a local parametrization centered at p. Let us begin
by writing the following commutative diagram:

(21)

TOU = R2 α //

dϕO

��

D
(
C∞(O)

)
ϕ∗

��
TpS

β // D
(
C∞(p)

) ,
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where α is the map defined in Example 2.27, and β = ϕ∗ ◦ α ◦ (dϕO)−1.
We shall proceed in two steps: first of all, we shall show that α is an isomor-

phism. Since dϕO and ϕ∗ are isomorphisms, this will imply that β is an isomorphism
too. We shall prove next that it is possible to express β in a way independent of
ϕ; so β will be a canonical isomorphism, independent of arbitrary choices, and we
shall be done.

Let us prove that α is an isomorphism. As it is obviously linear, it suffices to
show that it is injective and surjective. If v = (v1, v2) ∈ R2 = TOU , we have

vj = vj
∂xj
∂xj

(O) = α(v)(xj)

for j = 1, 2, where xj is the germ at the origin of the coordinate function xj .
Innparticular, if vj 6= 0 we have α(v)(xj) 6= 0; so v 6= O implies α(v) 6= O and
α is injective. To show that it is surjective, take D ∈ D

(
C∞(O)

)
; we claim that

D = α(v), where v = (Dx1, Dx2). First of all, note that

D1 = D(1 · 1) = 2D1 ,

so Dc = 0 for any constant c ∈ R, where c is the germ represented by (R2, c). Take
now an arbitrary f ∈ C∞(O). By applying Lemma 2.4, we find

Df = D
(
f(O)

)
+D

(
x1g1 + x2g2

)
(22)

=

2∑
j=1

[
xj(O)Dgj + gj(O)Dxj

]
=

2∑
j=1

Dxj
∂f

∂xj
(O) = α(v)(f) ,

where v = (Dx1, Dx2) as claimed, and we are done.
So, α and β are isomorphisms; to complete the proof, we only have to show

that β does not depend on ϕ but only on S and p. Let v ∈ TpS, and choose a curve
σ : (−ε, ε)→ S such that σ(0) = p and σ′(0) = v. We want to show that

(23) β(v)(f) = (f ◦ σ)′(0)

for all f ∈ C∞(p) and any representative (U, f) ∈ f . If we prove this, we are done:
indeed, the left-hand side of (23) does not depend on σ nor on the chosen represen-
tative of f , while the right-hand side does not depend on any local parametrization.
So β does not depend on ϕ or on σ, and thus it is the canonical isomorphism we
were looking for.

Let us then prove (23). Write σ = ϕ ◦ σo as in the proof of Proposition 2.6, so
that v = dϕO(vo) = vo1∂1|p + vo2∂2|p and vo = (vo1, v

o
2) = σ′o(0) ∈ R2. Then

β(v)(f) =
(
ϕ∗ ◦ α ◦ (dϕO)−1

)
(v)(f) = (ϕ∗ ◦ α)(vo)(f)

= α(vo)
(
ϕ∗O(f)

)
= α(vo)(f ◦ ϕ)

= vo1
∂(f ◦ ϕ)

∂x1
(O) + vo2

∂(f ◦ ϕ)

∂x2
(O)(24)

= (σ′o)1(0)
∂(f ◦ ϕ)

∂x1
(O) + (σ′o)2(0)

∂(f ◦ ϕ)

∂x2
(O)

=
(
(f ◦ ϕ) ◦ σo

)′
(0) = (f ◦ σ)′(0) ,

and we are done. �
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Remark 2.18. A consequence of diagram (21) is that, as anticipated in Re-
mark 2.17, the map ϕ∗ is the exact analogue of the differential of ϕ when we
interpret tangent planes as spaces of derivations.

From now on, we shall always identify TpS and D
(
C∞(p)

)
without (almost

ever) explicitly mentioning the isomorphism β; a tangent vector will be considered
both as a vector of R3 and as a derivation of the space of germs at p without further
remarks.

Remark 2.19. Let ϕ : U → S be a local parametrization centered at p ∈ S,
and take a tangent vector v = v1∂1|p + v2∂2|p ∈ TpS. Then (24) tells us that the
action of v as a derivation is given by

v(f) = v1
∂(f ◦ ϕ)

∂x1
(O) + v2

∂(f ◦ ϕ)

∂x2
(O) ,

for all germs f ∈ C∞(p) and all representatives (V, f) of f . In particular,

∂

∂xj

∣∣∣∣
p

(f) =
∂(f ◦ ϕ)

∂xj
(O) ,

a formula which explains the notation introduced in Definition 2.10. As a conse-
quence, for any p ∈ R2 we shall always identify the vectors ~e1, ~e2 of the canonical
basis of R2 with the partial derivatives ∂/∂x1|p, ∂/∂x2|p ∈ TpR2.

Remark 2.20. In the previous remark we have described the action of a tangent
vector on a germ by expressing the tangent vector in terms of the basis induced by
a local parametrization. If, on the other hand, we consider v = (v1, v2, v3) ∈ TpS
as a vector of R3, we may describe its action as follows: given f ∈ C∞(p), choose a

representative (V, f) of f and extend it using Proposition 2.5 to a smooth function f̃
defined in a neighborhood W of p in R3. Finally, let σ : (−ε, ε) → S be a curve
with σ(0) = p and σ′(0) = v. Then:

v(f) = (f ◦ σ)′(0) = (f̃ ◦ σ)′(0) =

3∑
j=1

vj
∂f̃

∂xj
(p) .

Warning: while the linear combination in the right-hand side of this formula is well
defined and only depends on the tangent vector v and on the germ f , the partial
derivatives ∂f̃/∂xj(p) taken on their own depend on the particular extension f̃ and
not only on f , and thus they have nothing to do with the surface S.

Remark 2.21. If we have two local parametrizations ϕ : U → S and ϕ̂ : Û → S

centered at p ∈ S, we obtain two bases {∂1, ∂2} and {∂̂1, ∂̂2} of TpS, where we

set ∂̂j = ∂ϕ̂/∂x̂j(O), and (x̂1, x̂2) are the coordinates in Û ; we want to compute
the change of basis matrix. If h = ϕ̂−1 ◦ ϕ is the change of coordinates, we have
ϕ = ϕ̂ ◦ h, and so

∂j =
∂ϕ

∂xj
(O) =

∂ϕ̂

∂x1

(
h(O)

)∂h1

∂xj
(O) +

∂ϕ̂

∂x2

(
h(O)

)∂h2

∂xj
(O)

=
∂x̂1

∂xj
(O)∂̂1 +

∂x̂2

∂xj
(O)∂̂2 ,

where, to make the formula easier to remember, we have written ∂x̂i/∂xj rather
than ∂hi/∂xj . So the change of basis matrix is the Jacobian matrix of the change
of coordinates.
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Remark 2.22. The identification of tangent vectors and derivations only holds
when working with functions and local parametrizations of class C∞. The reason
is Lemma 2.4. Indeed, if f ∈ Ck(U) with k <∞, the same proof provides functions
g1, . . . , gn which are in Ck−1(U) but a priori might not be in Ck(U), and the
computation made in (22) might become meaningless. This is an insurmountable
obstacle: in fact, the space of derivations of Ck germs with 1 ≤ k <∞ is of infinite
dimension (Exercise 2.33), and thus it cannot be isomorphic to a plane.

The way we have introduced the map ϕ∗, together with its relation with the
usual differential, suggests the following definition of a differential for an arbitrary
C∞ map between surfaces:

Definition 2.17. Let F : S1 → S2 be a C∞ map between two surfaces. The
differential of F at p ∈ S1 is the linear map dFp : TpS1 → TF (p)S2 defined by

dFp(D) = D ◦ F ∗p
for any derivation D ∈ TpS of C∞(p). We may also write (F∗)p instead of dFp.

It is not difficult to see how the differential looks like when applied to vectors
seen as tangent vectors to a curve:

Lemma 2.5. Let F : S1 → S2 be a C∞ map between surfaces, and p ∈ S1. If
σ : (−ε, ε)→ S1 is a curve with σ(0) = p and σ′(0) = v, then

(25) dFp(v) = (F ◦ σ)′(0) .

Proof. Set w = (F ◦ σ)′(0) ∈ TF (p)S2. Using the notation introduced in

the proof of Theorem 2.3, we have to show that dFp
(
β(v)

)
= β(w). But for each

f ∈ C∞
(
F (p)

)
we have

dFp
(
β(v)

)
(f) = β(v)

(
F ∗p (f)

)
= β(v)(f ◦ F )

=
(
(f ◦ F ) ◦ σ

)′
(0) =

(
f ◦ (F ◦ σ)

)′
(0) = β(w)(f) ,

where (U, f) is a representative of ~f , and we have used (23). �

As for the tangent plane, we then have two different ways to define the differ-
ential, each one with its own strengths and weaknesses. Formula (25) underlines
the geometric meaning of differential, showing how it acts on tangent vectors to
curves; Definition 2.17 highlights instead its algebraic properties, such as the fact
that the differential is a linear map between tangent planes, and makes it (far) eas-
ier to prove its properties. For instance, we obtain a one-line proof of the following
proposition:

Proposition 2.8.

(i) We have d(idS)p = id for every surface S and every p ∈ S.
(ii) Let F : S1 → S2 and G : S2 → S3 be C∞ maps between surfaces, and

take p ∈ S1. Then d(G ◦ F )p = dGF (p) ◦ dFp.
(iii) If F : S1 → S2 is a diffeomorphism then dFp : TpS1 → TF (p)S2 is invertible

and (dFp)
−1 = d(F−1)F (p) for all p ∈ S1.

Proof. It is an immediate consequence of Lemma 2.3 and of the definition of
differential. �

Formula (25) also suggests how to define the differential of a C∞ map defined
on a surface but with values in Rn:
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Definition 2.18. If F : S → Rn is a C∞ map, and p ∈ S, the differential
dFp : TpS → Rn of F at p is defined by setting dFp(v) = (F ◦σ)′(0) for all v ∈ TpS,
where σ : (−ε, ε)→ S is an arbitrary curve in S with σ(0) = p and σ′(0) = v. It is
not hard (exercise) to verify that dFp(v) only depends on v and not on the curve σ,
and that dFp is a linear map.

Remark 2.23. In particular, if f ∈ C∞(S) and v ∈ TpS then we have

dfp(v) = (f ◦ σ)′(0) = v(f) ,

where f is the germ represented by (S, f) at p. This formula shows that the action
of the differential of functions on tangent vectors is dual to the action of tangent
vectors on functions.

Remark 2.24. If F : S → Rn is of class C∞ and ϕ : U → S is a local
parametrization centered at p ∈ S, it is immediate (why?) to see that

dFp(∂j) =
∂(F ◦ ϕ)

∂xj
(O)

for j = 1, 2, where {∂1, ∂2} is the basis of TpS induced by ϕ. In particular, if ϕ̃ is
another local parametrization of S centered at p and F = ϕ̃ ◦ ϕ−1, then

(26) dFp(∂j) = ∂̃j

for j = 1, 2, where {∂̃1, ∂̃2} is the basis of TpS induced by ϕ̃.

Let us see now how to express the differential in local coordinates. Given
a smooth map F : S1 → S2 between surfaces, choose a local parametrization
ϕ : U → S1 centered at p ∈ S1, and a local parametrization ϕ̂ : Û → S2 cen-
tered at F (p) ∈ S2 with F

(
ϕ(U)

)
⊆ ϕ̂(Û). By definition, the expression of F in

local coordinates is the map F̂ = (F̂1, F̂2) : U → Û given by

F̂ = ϕ̂−1 ◦ F ◦ ϕ .
We want to find the matrix that represents dFp with respect to the bases {∂1, ∂2}
of TpS1 (induced by ϕ) and {∂̂1, ∂̂2} of TF (p)S2 (induced by ϕ̂); recall that the
columns of this matrix contain the coordinates with respect to the new basis of the
images under dFp of the vectors of the old basis. We may proceed in any of two
ways: either by using curves, or by using derivations.

A curve in S1, tangent to ∂j at p, is σj(t) = ϕ(t~ej); so

dFp(∂j) = (F ◦ σj)′(0) =
d

dt

(
ϕ̂ ◦ F̂ (t~ej)

)∣∣∣∣
t=0

=
∂F̂1

∂xj
(O)∂̂1 +

∂F̂2

∂xj
(O)∂̂2 .

Hence, the matrix that represents dFp with respect to the bases induced by two

local parametrizations is exactly the Jacobian matrix of the expression F̂ of F in
local coordinates. In particular, the differential as we have defined it really is a
generalization to surfaces of the usual differential of C∞ maps between open subsets
of the plane.

Let us now get again the same result by using derivations. We want to find

aij ∈ R such that dFp(∂j) = a1j ∂̂1 + a2j ∂̂2 for j = 1, 2. If we set ϕ̂−1 = (x̂1, x̂2), it
is immediate to verify that

∂̂h(x̂k) = δhk =

{
1 if h = k ,

0 if h 6= k ,
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where x̂k is the germ at p of the function x̂k. Hence,

aij = dFp(∂j)(x̂i) = ∂j
(
F ∗p (x̂i)

)
=
∂(x̂i ◦ F ◦ ϕ)

∂xj
(O) =

∂F̂i
∂xj

(O) ,

in accord with what we have already obtained.

Remark 2.25. Warning: the matrix representing the differential of a map
between surfaces is a 2 × 2 matrix (and not a 3 × 3, or 3 × 2 or 2 × 3 matrix),
because tangent planes have dimension 2.

We conclude this chapter remarking that the fact that the differential of a map
between surfaces is represented by the Jacobian matrix of the map expressed in
local coordinates allows us to easily transfer to surfaces classical calculus results.
For instance, here is the inverse function theorem (for other results of this kind, see
Exercises 2.19, 2.29, and 2.22):

Corollary 2.3. Let F : S1 → S2 be a smooth map between surfaces, and
p ∈ S1 a point such that dFp : TpS1 → TF (p)S2 is an isomorphism. Then there

exist a neighborhood V ⊆ S1 of p and a neighborhood V̂ ⊆ S2 of F (p) such that the

restriction F |V : V → V̂ is a diffeomorphism.

Proof. Let ϕ : U → S1 be a local parametrization at p, and ϕ̂ : Û → S2 a local
parametrization at F (p) with F

(
ϕ(U)

)
⊆ ϕ̂(Û). Then the assertion immediately

follows (why?) from the classical inverse function theorem (Theorem 2.1) applied
to ϕ̂−1 ◦ F ◦ ϕ. �
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(a) (b)

Figure 7. (a) a catenoid; (b) a helicoid

Guided problems

Definition 2.P.1. The catenoid is a surface of revolution having a catenary
(see Example 1.23) as its generatrix, and axis disjoint from the support of the
catenary; see Fig. 7.(a).

Problem 2.1. Let σ : R → R3 be the parametrization σ(v) = (a cosh v, 0, av)
of a catenary, and let S be the catenoid obtained by rotating this catenary around
the z-axis.

(i) Determine an immersed surface whose support is the catenoid S.
(ii) Determine for each point p of S a basis of the tangent plane TpS.

Solution. Proceeding as in Example 2.8 we find that an immersed surface
ϕ : R2 → R3 having the catenoid as support is

ϕ(u, v) = (a cosh v cos u, a cosh v sin u, av) .

Since σ is a global parametrization of a regular curve whose support does not meet
the z-axis, the catenoid is a regular surface. In particular, for all (u0, v0) ∈ R2 the
restriction of ϕ to a neighborhood of (u0, v0) is a local parametrization of S, and
so in the point p = ϕ(u0, v0) of the catenoid a basis of the tangent plane is given
by

∂1|p =
∂ϕ

∂u
(u0, v0) =

∣∣∣∣∣∣
−a cosh v0 sinu0

a cosh v0 cosu0

0

∣∣∣∣∣∣ ,
∂2|p =

∂ϕ

∂v
(u0, v0) =

∣∣∣∣∣∣
a sinh v0 cos u0

a sinh v0 sin u0

a

∣∣∣∣∣∣ .
�

Definition 2.P.2. Given a circular helix in R3, the union of the straight lines
issuing from a point of the helix and intersecting orthogonally the axis of the helix
is the helicoid associated with the given helix; see Fig. 7.(b).

Problem 2.2. Given a 6= 0, let σ : R→ R3 be the circular helix parametrized
by σ(u) = (cos u, sin u, au).



GUIDED PROBLEMS 71

(i) Prove that the helicoid associated with σ is the support of the map
ϕ : R2 → R3 given by

ϕ(u, v) = (v cosu, v sinu, au) .

(ii) Show that ϕ is a global parametrization and that the helicoid is a regular
surface.

(iii) Determine, for every point of the helicoid, a basis of the tangent plane.

Solution. (i) Indeed the straight line issuing from a point (x0, y0, z0) ∈ R3

and intersecting orthogonally the z-axis is parametrized by v 7→ (vx0, vy0, z0).

(ii) The map ϕ is clearly of class C∞. Moreover, its differential is injective in

every point; indeed, ∂ϕ∂u = (−v sin u, v cos u, a) and ∂ϕ
∂v = (cos u, sin u, 0), and so

∂ϕ

∂u
∧ ∂ϕ
∂v

= (−a sinu, a cos u,−v)

has absolute value
√
a2 + v2 nowhere zero. Finally, ϕ is injective and is a home-

omorphism with its image. Indeed, the continuous inverse can be constructed as
follows: if (x, y, z) = ϕ(u, v), then u = z/a and v = x/ cos(z/a), or v = y/ sin(z/a)
if cos(z/a) = 0.

(iii) In the point p = ϕ(u0, v0) of the helicoid a basis of the tangent plane is
given by

∂1|p =
∂ϕ

∂u
(u0, v0) =

∣∣∣∣∣∣
−v0 sinu0

v0 cosu0

a

∣∣∣∣∣∣ , ∂2|p =
∂ϕ

∂v
(u0, v0) =

∣∣∣∣∣∣
cosu0

sinu0

0

∣∣∣∣∣∣ .
�

Definition 2.P.3. Let H ⊂ R3 be a plane, ` ⊂ R3 a straight line not contained
in H, and C ⊆ H a subset of H. The cylinder with generatrix C and directrix `
is the subset of R3 consisting of the lines parallel to ` issuing from the points of C.
If ` is orthogonal to H, the cylinder is said to be right.

Problem 2.3. Let C ⊂ R2 be the support of a Jordan curve (or open arc) of
class C∞ contained in the xy-plane, and ` ⊂ R3 a straight line transversal to the
xy-plane. Denote by S ⊂ R3 the cylinder having C as generatrix and ` as directrix.

(i) Show that S is a regular surface.
(ii) Determine an atlas for S when ` is the z-axis and C is the circle of equation

x2 + y2 = 1 in the plane H = {z = 0}.
(iii) If S is as in (ii), show that the map G : R3 → R2 defined by

G(x, y, z) = (ezx, ezy)

induces a diffeomorphism G|S : S → R2 \ {(0, 0)}.
Solution. (i) Let ~v be a versor parallel to `, denote by H the xy-plane, and

let σ : R → C be a global or periodic parametrization of C (see Example 2.8). A
point p = (x, y, z) belongs to S if and only if there exist a point p0 ∈ C and a real
number v such that p = p0 + v~v. Define then ϕ : R2 → R3 by setting

ϕ(t, v) = σ(t) + v~v .

Since ∂ϕ/∂t(t, v) = σ′(t) ∈ H and ∂ϕ/∂v(t, v) = ~v, the differential of ϕ has rank 2
everywhere, and so ϕ is an immersed surface with support S.
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If C is an open Jordan arc, then σ is a homeomorphism with its image, so we
obtain a continuous inverse of ϕ as follows: if p = ϕ(t, v) then

v =
〈p, ~w〉
〈~v, ~w〉 and t = σ−1

(
p− v~v

)
,

where ~w is a versor orthogonal to H, and 〈~v, ~w〉 6= 0 because ~v is transversal to H.
So in this case ϕ is a global parametrization of the regular surface S.

If C is a Jordan curve, the same argument shows that if (a, b) is an interval
where σ is a homeomorphism with its image then ϕ restricted to (a, b) × R is a
homeomorphism with its image; so, as seen for surfaces of revolution, it turns out
that S is a regular surface with an atlas consisting of two charts, obtained by
restricting ϕ to suitable open subsets of the plane.

(ii) In (i) we already constructed an atlas; let us find another one. This par-
ticular cylinder is the level surface f−1(0) of the function f : R3 → R given by
f(x, y, z) = x2 + y2 − 1; note that 0 is a regular value of f because the gradi-
ent ∇f = (2x, 2y, 0) of f is nowhere zero on S. We shall find an atlas for S by
following the proof of Proposition 2.1, where it is shown that maps of the form
ϕ(u, v) =

(
u, g(u, v), v

)
with g solving the equation f

(
u, g(u, v), v

)
= 0 are local

parametrizations at points p0 ∈ S where ∂f/∂y(p0) 6= 0, and that maps of the form
ϕ(u, v) =

(
g(u, v), u, v

)
with g solving the equation f

(
g(u, v), u, v

)
= 0 are local

parametrizations at points p0 ∈ S where ∂f/∂x(p0) 6= 0.
In our case, ∇f = (2x, 2y, 0). So if y0 6= 0 we must solve the equation

u2 + g(u, v)2 − 1 = 0; therefore g(u, v) = ±
√

1− u2, and setting

U = {(u, v) ∈ R2 | − 1 < u < 1}
we get the parametrizations ϕ+, ϕ− : U → R3 at points in S ∩ {y 6= 0} by setting

ϕ+(u, v) = (u,
√

1− u2, v) , ϕ−(u, v) = (u,−
√

1− u2, v) .

Analogously, we construct the local parametrizations ψ+, ψ− : U → R3 at points
in S ∩ {x 6= 0} by setting

ψ+(u, v) = (
√

1− u2, u, v) , ψ−(u, v) = (−
√

1− u2, u, v) .

It is then easy to see that {ϕ+, ϕ−, ψ+, ψ−} is an atlas of S, because every point of
S is contained in the image of at least one of them.

(iii) The map G|S is the restriction to S of the map G which is of class C∞ on
the whole R3, so it is of class C∞ on S. So, to prove that G|S is a diffeomorphism
it suffices to find a map H : R2 \{(0, 0)} → S of class C∞ that is the inverse of G|S .
First of all, note that the image of G|S lies in R2\{(0, 0)}. Moreover, for all a, b ∈ R
with a2+b2 = 1 the restriction of G|S to the straight line {(a, b, v) ∈ S | v ∈ R} ⊂ S
is a bijection with the half-line {ev(a, b) | v ∈ R} ⊂ R2\{(0, 0)}. SoG|S is a bijection
between S and R2 \ {(0, 0)}, and the inverse H we are looking for is given by

H(a, b) =

(
a√

a2 + b2
,

b√
a2 + b2

, log
√
a2 + b2

)
.

Note that H is of class C∞, since it is a C∞ map from R2 \ {(0, 0)} to R3 having
S as its image. �

Problem 2.4. As in Example 2.25, write a quadratic polynomial p in three
variables in the form p(x) = xTAx + 2bTx + c, where A = (aij) ∈ M3,3(R) is a
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symmetric matrix, b ∈ R3 (we are writing the elements of R3 as column vectors),
and c ∈ R. Let now S be the quadric in R3 defined by the equation p(x) = 0.
Remember that the quadric S is said to be central if the linear system Ax+ b = O
has a solution (called center of the quadric), and is a paraboloid otherwise (see [2,
p. 149]).

(i) Prove that (the connected components of) the paraboloids and the central
quadrics not containing any of their centers are regular surfaces.

(ii) Given the symmetric matrix

B =

(
A b
bT c

)
∈M4,4(R) ,

show that a point x ∈ R3 belongs to the quadric if and only if

(27)
(
xT 1

)
B

(
x
1

)
= 0 .

(iii) Prove that if det B 6= 0 then the connected components of the quadric S
are (either empty or) regular surfaces.

(iv) Show that if S is a central quadric containing one of its centers, then its
components are regular surfaces if and only if S is a plane if and only if
rg A = 1.

Solution. (i) In Example 2.25 we saw that ∇p(x) = 2(Ax+ b), so the critical
points of f are exactly the centers of S. So, if S is a paraboloid or it does not
contain its centers then 0 is a regular value of p, and the components of S = p−1(0)
(if non-empty) are regular surfaces by Proposition 2.1.

(ii) The product in the left-hand side of (27) is exactly equal to p(x).

(iii) Assume by contradiction that S is a central quadric containing a center x0.
From p(x0) = 0 and Ax0 + b = O we immediately deduce (because xT0 b = bTx0)

that

(
x0

1

)
is a non-zero element of the kernel of B, and hence det B = 0. The

assertion then follows from (i).

(iv) Suppose that x0 ∈ S is a center of S. Since the centers of S are exactly the
critical points of p, the property of containing one of its own centers is preserved
under translations or linear transformations on R3; hence, up to a translation, we
may assume without loss of generality that x0 = O. Now, the origin is a center if
and only if b = O, and it belongs to S if and only if c = O. This means that O ∈ S
is a center of S if and only if p(x) = xTAx. By Sylvester’s law of inertia (see [2,
Vol. II, Theorem 13.4.7, p. 98]), we only have the following cases:

(a) if det A 6= 0, then up to a linear transformation we may assume that
p(x) = x2

1 + x2
2 ± x2

3, so either S is a single point or it is a two-sheeted
cone, and in both cases it is not a regular surface;

(b) if rg A = 2, then up to a linear transformation we may assume that
p(x) = x2

1 ± x2
2, so either S is a straight line or it is the union of two

incident planes, and in both cases it is not a regular surface;
(c) if rg A = 1, then up to a linear transformation we have p(x) = x2

1, and so
S is a plane. �
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Figure 8. Enneper’s surface

Exercises

IMMERSED SURFACES AND REGULAR SURFACES

2.1. Show that the map ϕ : R2 → R3 defined by

ϕ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

is an injective immersed surface (Enneper’s surface; see Fig. 8). Is it a homeomor-
phism with its image as well?

2.2. Prove that the map ϕ : R2 → R3 defined by

ϕ(u, v) =

(
u+ v

2
,
u− v

2
, uv

)
is a global parametrization of the hyperbolic paraboloid and describe its coordinate
curves, v 7→ ϕ(u0, v) with u0 fixed and u 7→ ϕ(u, v0), with v0 fixed.

2.3. Let U = {(u, v) ∈ R2 | u > 0}. Show that the map ϕ : U → R3 given by
ϕ(u, v) = (u+ v cosu, u2 + v sinu, u3) is an immersed surface.

2.4. Let S2 ⊂ R3 be the sphere of equation x2 + y2 + z2 = 1, denote by
N the point of coordinates (0, 0, 1), and let H be the plane of equation z = 0,
which we shall identify with R2 by the projection (u, v, 0) 7→ (u, v). The stereo-
graphic projection πN : S2 \ {N} → R2 from the point N onto the plane H maps
p = (x, y, z) ∈ S2 \ {N} to the intersection point πN (p) between H and the line
joining N and p.

(i) Show that the map πN is bijective and continuous, with continuous in-
verse π−1

N : R2 → S \ {N} given by

π−1
N (u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

(ii) Show that π−1
N is a local parametrization of S2.
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(iii) Determine, in an analogous way, the stereographic projection πS of S2

from the point S = (0, 0,−1) onto the plane H.
(iv) Show that {π−1

N , π−1
S } is an atlas for S2 consisting of two charts.

2.5. Let S ⊂ R3 be a connected subset of R3 such that there exists a family {Sα}
of surfaces with S =

⋃
α Sα and such that every Sα is open in S. Prove that S is a

surface.

2.6. Find an atlas for the ellipsoid of equation (x/a)2 +(y/b)2 +(z/c)2 = 1 (see
also Example 2.11).

2.7. Consider a Jordan curve C of class C∞ contained in a plane H ⊂ R3,
take a straight line ` ⊂ H not containing C, and suppose that C is symmetric with
respect to ` (that is, ρ(C) = C, where ρ : H → H is the reflection with respect
to `). Prove that the set obtained by rotating C around ` is a regular surface. In
particular, this shows again that the sphere is a regular surface.

2.8. Prove that the set of critical points of a map F : U → Rm of class C∞,
where U ⊂ Rn is open, is a closed subset of U .

2.9. Let V ⊆ R3 be an open subset and f ∈ C∞(V ). Prove that for all a ∈ R
the connected components of the set f−1(a) \Crit(f) are regular surfaces. Deduce
that each component of complement of the vertex in a double-sheeted cone is a
regular surface.

2.10. Prove using Proposition 2.1 that the torus of equation

z2 = r2 − (
√
x2 + y2 − a)2,

obtained by rotating the circle with radius r < a and center (a, 0, 0) around the
z-axis is a regular surface.

2.11. Let S ⊂ R3 be a subset such that for all p ∈ S there exists an open
neighborhood W of p in R3 such that W ∩ S is a graph with respect to one of the
three coordinate planes. Prove that S is a regular surface.

2.12. Show that if σ : I → U ⊂ R2 is the parametrization of a regular C∞

curve whose support is contained in an open set U ⊂ R2, and if ϕ : U → S is a
local parametrization of a surface S then the composition ϕ ◦σ parametrizes a C∞

curve in S.

2.13. Prove that the set S = {(x, y, z) ∈ R3 | x2 + y2 − z3 = 1} is a regular
surface, and find an atlas for it.

2.14. Let ϕ : R× (0, π)→ S2 be the immersed surface given by

ϕ(u, v) = (cosu sin v, sinu sin v, cos v) ,

and let σ : (0, 1) → S2 be the curve defined by σ(t) = ϕ(log t, 2 arctan t). Show
that the tangent vector to σ at σ(t) forms a constant angle of π/4 with the tangent
vector to the meridian passing through σ(t), where the meridians are characterized
by the condition u = const.

2.15. Show that the surface S1 ⊂ R3 of equation x2 + y2z2 = 1 is not compact,
while the surface S2 ⊂ R3 of equation x2 + y4 + z6 = 1 is compact.
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Figure 9. The pseudosphere

2.16. Consider a map f : U → R3, defined on an open subset U ⊂ R2 and of
class C∞, and let ϕ : R2 → R3 be given by ϕ(u, v) = (u, v, f(u, v)). Prove that ϕ
is a diffeomorphism between U and S = ϕ(U).

2.17. Show that, for any real numbers a, b, c > 0, the following maps are
local parametrizations of quadrics in R3, with equations analogous to those given
in Example 2.12:

ϕ1(u, v) = (a sinu cos v, b sinu sin v, c cosu) ellipsoid,
ϕ2(u, v) = (a sinhu cos v, b sinhu sin v, c coshu) two-sheeted hyperboloid,
ϕ3(u, v) = (a sinhu sinh v, b sinhu cosh v, c sinhu) one-sheeted hyperboloid,
ϕ4(u, v) = (au cos v, bu sin v, u2) elliptic paraboloid,
ϕ5(u, v) = (au cosh v, bu sinh v, u2) hyperbolic paraboloid.

Is it possible to choose a, b, c in such a way that the surface is a surface of
revolution with respect to one of the coordinate axes? Consider each case separately.

2.18. Let S ⊂ R3 be the set (called pseudosphere) obtained by rotating around
the z-axis the support of the tractrix σ : (0, π)→ R3 given by

σ(t) =
(

sin t, 0, cos t+ log tan(t/2)
)

;

see Fig. 9. Denote by H ⊂ R3 the plane {z = 0}. Prove that S is not a regular
surface, whereas each connected component of S \ H is; see Example 3.37 and
Problem 3.8.

SMOOTH FUNCTIONS

2.19. Let S ⊂ R3 be a surface. Prove that if p ∈ S is a local minimum or a
local maximum of a function f ∈ C∞(S) then dfp ≡ 0.

2.20. Define the notions of a C∞ map from an open subset of Rn to a surface,
and of a C∞ map from a surface to an Euclidean space Rm.

2.21. Let S ⊂ R3 be a surface, and p ∈ S. Prove that there exists an open set
W ⊆ R3 of p in R3, a function f ∈ C∞(W ) and a regular value a ∈ R of f such
that S ∩W = f−1(a).



EXERCISES 77

2.22. Given a surface S ⊂ R3, take a function f ∈ C∞(S) and a regular value
a ∈ R of f , in the sense that dfp 6≡ O for all p ∈ f−1(a). Prove that f−1(a) is
locally the support of a simple curve of class C∞.

2.23. Let C ⊂ R2 be the support of a Jordan curve (or open arc) of class C∞

contained in the half-plane {x > 0}. Identify R2 with the xz-plane in R3, and let
S be the set obtained by rotating C around the z-axis, which we shall denote by `.

(i) Let Φ: R+ × R × S1 → R3 be given by Φ
(
x, z, (s, t)

)
= (xs, xt, z) for all

x > 0, z ∈ R and (s, t) ∈ S1. Prove that Φ is a homeomorphism between
R+ × R× S1 and R3 \ `, and deduce that S is homeomorphic to C × S1.

(ii) Let Ψ: R2 → C × S1 be given by Ψ(t, θ) =
(
σ(t), (cos θ, sin θ)

)
, where

σ : R → R2 is a global or periodic parametrization of C, and let I ⊆ R
be an open interval where σ is injective. Prove that Ψ|I×(θ0,θ0+2π) is a
homeomorphism with its image for all θ0 ∈ R.

(iii) Use (i) and (ii) to prove that S is a regular surface.

TANGENT PLANE

2.24. Let S ⊂ R3 be a surface, p ∈ S and {v1, v2} a basis of TpS. Prove that
there is a local parametrization ϕ : U → S centered at p such that ∂1|p = v1 and
∂2|p = v2.

2.25. Given an open set W ⊆ R3 and a function f ∈ C∞(W ), take a ∈ R and
let S be a connected component of f−1(a) \ Crit(f). Prove that for all p ∈ S the
tangent plane TpS coincides with the subspace of R3 orthogonal to ∇f(p).

2.26. Show that the tangent plane at a point p = (x0, y0, z0) of a level surface
f(x, y, z) = 0 corresponding to the regular value 0 of a C∞ function f : R3 → R is
given by the equation

∂f

∂x
(p)x+

∂f

∂y
(p) y +

∂f

∂z
(p) z = 0 ,

while the equation of the affine tangent plane, parallel to the tangent plane and
passing through p, is given by

∂f

∂x
(p) (x− x0) +

∂f

∂y
(p) (y − y0) +

∂f

∂z
(p) (z − z0) = 0 .

2.27. Determine the tangent plane at every point of the hyperbolic paraboloid
with global parametrization ϕ : R2 → R3 given by ϕ(u, v) = (u, v, u2 − v2).

2.28. Let S ⊂ R3 be a surface, and p ∈ S. Prove that

m = {f ∈ C∞(p) | f(p) = 0}
is the unique maximal ideal of C∞(p), and that TpS is canonically isomorphic to
the dual (as vector space) of m/m2.

2.29. Let ϕ : R2 → R3 be given by ϕ(u, v) = (u, v3, u− v), and let σ : R→ R3

be the curve parametrized by σ(t) = (3t, t6, 3t− t2).

(i) Prove that S = ϕ(R2) is a regular surface.
(ii) Show that σ is regular and has support contained in S.
(iii) Determine the curve σo : R→ R2 such that σ = ϕ ◦ σo.
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(iv) Write the tangent versor to σ at O = σ(0) as a combination of the basis
∂1 and ∂2 of the tangent plane TOS to S at O induced by ϕ.

2.30. Let S ⊂ R3 be a surface. Prove that a C∞ function F : S → Rm satisfies
dFp ≡ O for all p ∈ S if and only if F is constant.

2.31. Two surfaces S1, S2 ⊂ R3 are transversal if S1∩S2 6= ∅ and TpS1 6= TpS2

for all p ∈ S1 ∩ S2. Prove that if S1 and S2 are transversal, then each component
of S1 ∩ S2 is locally the support of a simple regular C∞ curve.

2.32. Let H ⊂ R3 be a plane, ` ⊂ R3 a straight line not contained in H, and
C ⊆ H a subset of H. Consider the cylinder S with generatrix C and directrix `.
Show that the tangent plane to S is constant at the points of S belonging to a line
parallel to the directrix `.

2.33. Let ϕ : R3 → R3 be the global parametrization of the regular surface
S = ϕ(R2) given by ϕ(u, v) = (u − v, u2 + v, u − v3). Determine the Cartesian
equation of the tangent plane to S at p = (0, 2, 0) = ϕ(1, 1).

2.34. Prove that the space of derivations of germs of Ck functions has infinite
dimension if 1 ≤ k <∞ .

2.35. Prove that the space of derivations of germs of continuous functions con-
sists of just the zero derivation.

Definition 2.E.1. Let S1 and S2 be regular surfaces in R3 having in com-
mon a point p. We say that S1 and S2 have contact of order at least 1 at p
if there exist parametrizations ϕ1 of S1 and ϕ2 of S2, centered at p, such that
∂ϕ1/∂u(O) = ∂ϕ2/∂u(O) and ∂ϕ1/∂v(O) = ∂ϕ2/∂v(O). Moreover, the surfaces
are said to have contact of order at least 2 at p if there is a pair of parametrizations
centered at p for which all the second order partial derivatives coincide too.

2.36. Show that two surfaces have contact of order at least 1 at p if and only
if they have the same tangent plane at p. In particular, the tangent plane at p is
the only plane having contact of order at least 1 with a regular surface.

2.37. Show that if the intersection between a regular surface S and a plane H
consists of a single point p0, then H is the tangent plane to S at p0.

SMOOTH MAPS BETWEEN SURFACES

2.38. Prove that a smooth map between surfaces is necessarily continuous.

2.39. Let F : S1 → S2 be a map between surfaces, and p ∈ S1. Prove that if
there exist a local parametrization ϕ1 : U1 → S1 at p and a local parametrization
ϕ2 : U2 → S2 at F (p) such that ϕ−1

2 ◦ F ◦ ϕ1 is of class C∞ in a neighborhood of
ϕ−1

1 (p), then ψ−1
2 ◦F ◦ψ1 is of class C∞ in a neighborhood of ψ−1

1 (p) for any local
parametrization ψ1 : V1 → S1 of S at p and any local parametrization ψ2 : V2 → S2

of S at F (p).

2.40. Show that the relation “S1 is diffeomorphic to S2” is an equivalence
relation on the set of regular surfaces in R3.

2.41. Let F : S2 → R3 be defined by

F (p) = (x2 − y2, xy, yz)

for all p = (x, y, z) ∈ S2. Set N = (0, 0, 1) and E = (1, 0, 0).
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(i) Prove that dFp is injective on TpS
2 for all p ∈ S2 \ {±N,±E}.

(ii) Prove that S1 = F (S2 \ {y = 0}) is a regular surface, and find a basis of
TqS1 for all q ∈ S1.

(iii) Given p = (0, 1, 0) and q = F (p), choose a local parametrization of S2 at
p, a local parametrization of S1 at q, and write the matrix representing
the linear map dFp : TpS

2 → TqS1 with respect to the bases of TpS
2 and

TqS1 determined by the local coordinates you have chosen.

2.42. Show that the antipodal map F : S2 → S2 defined by F (p) = −p is a
diffeomorphism.

2.43. Determine an explicit diffeomorphism between the portion of a cylinder
defined by {(x, y, z) ∈ R3 | x2 + y2 = 1, −1 < z < 1} and S2 \ {N,S}, where
N = (0, 0, 1) and S = (0, 0,−1).

2.44. Determine a diffeomorphism between the unit sphere S2 ⊂ R3 and the
ellipsoid of equation 4x2 + 9y2 + 25z2 = 1.

2.45. Let C1 and C2 be supports of two regular curves contained in a surface S
that are tangent at a point p0, that is, having the same tangent line at a common
point p0. Show that if F : S → S is a diffeomorphism then F (C1) and F (C2) are
the supports of regular curves tangent at F (p0).

2.46. Let f : S1 → S2 be a smooth map between connected regular surfaces.
Show that f is constant if and only if df ≡ 0.

2.47. Prove that every surface of revolution having as its generatrix an open
Jordan arc is diffeomorphic to a circular cylinder.

2.48. Show that a rotation of an angle θ of R3 around the z-axis induces a
diffeomorphism on a regular surface of revolution obtained by rotating a curve
around the z-axis.

2.49. Let S ⊂ Rn be a regular surface and p0 /∈ S. Prove that the function
d : S → R defined by d(p) = ‖p− p0‖, i.e., the distance from p0, is of class C∞.

2.50. Construct an explicit diffeomorphism F between the one-sheeted hyper-
boloid of equation (x/a)2 + (y/b)2 − (z/c)2 = 1 and the right circular cylinder of
equation x2 + y2 = 1, determine its differential dFp at every point, and describe
the inverse of F in local coordinates.

2.51. Construct a diffeomorphism between the right circular cylinder of equa-
tion x2 + y2 = 4 and the plane R2 with the origin removed.





CHAPTER 3

Curvatures

One of the main goals of differential geometry consists in finding an effective and
meaningful way of measuring the curvature of non-flat objects (curves and surfaces).
For curves we have seen that it is sufficient to measure the changes in tangent
versors: in the case of surface things are, understandably, more complicated. The
first obvious problem is that a surface can curve differently in different directions;
so we need a measure of curvature related to tangent directions, that is, a way of
measuring the variation of tangent planes.

To solve this problem we have to introduce several new tools. First of all,
we need to know the length of vectors tangent to the surface. As explained in
Section 3.1, for this it suffices to restrict to each tangent plane the canonical scalar
product in R3. In this way, we get a positive definite quadratic form on each tangent
plane (the first fundamental form), which allows us to measure the length of tangent
vectors to the surface (and, as we shall see in Section 3.2, the area of regions of the
surfaces as well). It is worthwhile to notice right now that the first fundamental
form is an intrinsic object associated with the surface: we may compute it while
remaining within the surface itself, without having to go out to R3.

A tangent plane, being a plane in R3, is completely determined as soon as we
know an orthogonal versor. So a family of tangent planes can be described by
the Gauss map, associating each point of the surface with a versor normal to the
tangent plane at that point. In Section 3.3 we shall see that the Gauss map always
exists locally, and exists globally only on orientable surfaces (that is, surfaces where
we can distinguish an interior and an exterior).

In Section 3.4 we shall at last define the curvature of a surface along a tangent
direction. We shall do so in two ways: geometrically (as the curvature of the curve
obtained by intersecting the surface with an orthogonal plane) and analytically, by
using the differential of the Gauss map and an associated quadratic form (the second
fundamental form). In particular, in Section 3.5 we shall introduce the Gaussian
curvature of a surface as the determinant of the differential of the Gauss map, and
we shall see that the Gaussian curvature summarize the main curvature properties
of a surface. Furthermore, in Section 3.6, we shall prove Gauss’ Theorema Egregium,
showing that, although the definition involves explicitly the ambient space R3, the
Gaussian curvature actually is an intrinsic quantity, that is, it can be measured
while remaining inside the surface. This, for instance, allows us to determine that
the Earth is not flat without resorting to satellite photos, since it is possible to
ascertain that the Earth has non zero Gaussian curvature with measurements made
at sea level.

81
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3.1. The first fundamental form

As mentioned in the introduction to this chapter, we begin our journey among
surfaces’ curvatures by measuring the length of tangent vectors.

The Euclidean space R3 is intrinsically provided with the canonical scalar prod-
uct. If S ⊂ R3 is a surface, and p ∈ S, the tangent plane TpS may be thought of

as a vector subspace of R3, and so we may compute the canonical scalar product
of two tangent vectors to S at p.

Definition 3.1. Let S ⊂ R3 be a surface. For all p ∈ S we shall denote by
〈· , ·〉p the positive definite scalar product on TpS induced by the canonical scalar

product of R3. The first fundamental form Ip : TpS → R is the (positive definite)
quadratic form associated with this scalar product:

∀v ∈ TpS Ip(v) = 〈v, v〉p ≥ 0 .

Remark 3.1. The knowledge of the first fundamental form Ip is equivalent to
the knowledge of the scalar product 〈· , ·〉p: indeed,

〈v, w〉p =
1

2

[
Ip(v + w)− Ip(v)− Ip(w)

]
=

1

4

[
Ip(v + w)− Ip(v − w)

]
.

If we forget that the surface lives in the ambient space R3, and that the first
fundamental form is induced by the constant canonical scalar product of R3, limiting
ourselves to try and understand what can be seen from within the surface, we
immediately notice that it is natural to consider 〈· , ·〉p as a scalar product defined
on the tangent plane TpS which varies with p (and with the tangent plane).

A way to quantify this variability consists in using local parametrizations and
the bases they induce on the tangent planes to deduce the (variable!) matrix
representing this scalar product. Let then ϕ : U → S be a local parametrization
at p ∈ S, and {∂1, ∂2} the basis of TpS induced by ϕ. If we take two tangent
vectors v, w ∈ TpS and we write them as linear combination of basis vectors,
that is v = v1∂1 + v2∂2 and w = w1∂1 + w2∂2 ∈ TpS, we may express 〈v, w〉p in
coordinates:

〈v, w〉p = v1w1〈∂1, ∂1〉p + [v1w2 + v2w1]〈∂1, ∂2〉p + v2w2〈∂2, ∂2〉p .
Definition 3.2. Let ϕ : U → S be a local parametrization of a surface S. Then

the metric coefficients of S with respect to ϕ are the functions E, F , G : U → R
given by

E(x) = 〈∂1, ∂1〉ϕ(x) , F (x) = 〈∂1, ∂2〉ϕ(x) , G(x) = 〈∂2, ∂2〉ϕ(x) ,

for all x ∈ U .

Clearly, the metric coefficients are (why?) C∞ functions on U , and they com-
pletely determine the first fundamental form:

Ip(v) = E(x)v2
1 + 2F (x)v1v2 +G(x)v2

2 =
∣∣v1 v2

∣∣ ∣∣∣∣E(x) F (x)
F (x) G(x)

∣∣∣∣ ∣∣∣∣v1

v2

∣∣∣∣
for all p = ϕ(x) ∈ ϕ(U) and v = v1∂1 + v2∂2 ∈ TpS.

Remark 3.2. The notation E, F and G, which we shall systematically use,
was introduced by Gauss in the early 19th century. In a more modern notation we
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may write E = g11, F = g12 = g21 and G = g22, so as to get

〈v, w〉p =

2∑
h,k=1

ghk(p)vhwk .

Remark 3.3. We have introduced E, F and G as functions defined on U .
However, it will sometimes be more convenient to consider them as functions defined
on ϕ(U), that is, to replace them with E ◦ϕ−1, F ◦ϕ−1 and G ◦ϕ−1, respectively.
You might have noticed that we have performed just this substitution in the last
formula.

Remark 3.4. Warning: the metric coefficients depend strongly on the local
parametrization! Example 3.4 will show how much they can change, even in a very
simple case, when choosing a different local parametrization.

Example 3.1. Let S ⊂ R3 be the plane passing through p0 ∈ R3 and parallel
to the linearly independent vectors ~v1, ~v2 ∈ R3. In Example 2.2 we have seen that
a local parametrization of S is the map ϕ : R2 → R3 given by

ϕ(x1, x2) = p0 + x1~v1 + x2~v2 .

For all p ∈ S the basis of TpS induced by ϕ is ∂1 = ~v1 and ∂2 = ~v2, so the metric
coefficients of the plane with respect to ϕ are given by E ≡ ‖~v1‖2, F ≡ 〈~v1, ~v2〉 and
G ≡ ‖~v2‖2. In particular, if ~v1 and ~v2 are orthonormal versors, we find

E ≡ 1 , F ≡ 0 , G ≡ 1 .

Example 3.2. Let U ⊆ R2 be an open set, h ∈ C∞(U), and ϕ : U → R3

the local parametrization of the graph Γh given by ϕ(x) =
(
x, h(x)

)
. Recalling

Example 2.23 we see that the metric coefficients of Γh with respect to ϕ are given
by

E = 1 +

∣∣∣∣ ∂h∂x1

∣∣∣∣2 , F =
∂h

∂x1

∂h

∂x2
, G = 1 +

∣∣∣∣ ∂h∂x2

∣∣∣∣2 .

Example 3.3. Let S ⊂ R3 be the right circular cylinder with radius 1 cen-
tered on the z-axis. A local parametrization ϕ : (0, 2π) × R → R3 is given by
ϕ(x1, x2) = (cosx1, sinx1, x2). The basis induced by this parametrization is given
by ∂1 = (− sinx1, cosx1, 0) e ∂2 = (0, 0, 1), and so

E ≡ 1 , F ≡ 0 , G ≡ 1 .

Example 3.4. Using the local parametrization ϕ : U → R3 of the unit sphere

S2 given by ϕ(x, y) =
(
x, y,

√
1− x2 − y2

)
and recalling the local basis computed

in Example 2.22, we get

E =
1− y2

1− x2 − y2
, F =

xy

1− x2 − y2
, G =

1− x2

1− x2 − y2
.

On the other hand, the second local basis in Example 2.22 computed using the
parametrization ψ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) gives us

E ≡ 1 , F ≡ 0 , G = sin2 θ .

Example 3.5. Let S ⊂ R3 be the helicoid with the local parametrization
ϕ : R2 → R3 given by ϕ(x, y) = (y cosx, y sinx, ax) for some a ∈ R∗. Then, recalling
the local basis computed in Problem 2.2, we find

E = y2 + a2, F ≡ 0, G ≡ 1 .
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Example 3.6. Let S ⊂ R3 be the catenoid with the local parametrization
ψ : R × (0, 2π) → R3 given by ψ(x, y) = (a coshx cos y, a coshx sin y, ax) for some
a ∈ R∗. Then, recalling the local basis computed in Problem 2.1, we find

E = a2 cosh2 x , F ≡ 0 , G = a2 cosh2 x .

Example 3.7. More in general, let ϕ : I × J → R3, given by

ϕ(t, θ) =
(
α(t) cos θ, α(t) sin θ, β(t)

)
,

be a local parametrization of a surface of revolution S obtained as described in
Example 2.8 (where I and J are suitable open intervals). Then, using the local
basis computed in Example 2.24, we get

E = (α′)2 + (β′)2 , F ≡ 0 , G = α2 .

For instance, if S is the torus studied in Example 2.9 then

E ≡ r2 , F ≡ 0 , G = (r cos t+ x0)2 .

The first fundamental form allows us to compute the length of curves on the
surface. Indeed, if σ : [a, b]→ S is a curve whose image is contained in the surface
S, we have

L(σ) =

∫ b

a

√
Iσ(t)

(
σ′(t)

)
dt .

Conversely, if we can compute the length of curves with support on the surface S,
we may retrieve the first fundamental form as follows: given p ∈ S and v ∈ TpS let
σ : (−ε, ε) → S be a curve with σ(0) = p and σ′(0) = v, and set `(t) = L(σ|[0,t]).
Then (check it!):

Ip(v) =

∣∣∣∣d`dt
(0)

∣∣∣∣2 .

So, in a sense, the first fundamental form is related to the intrinsic metric
properties of the surface, properties that do not depend on the way the surface
is immersed in R3. Staying within the surface, we may measure the length of a
curve, and so we may compute the first fundamental form, without having to pop
our head into R3; moreover, a diffeomorphism that preserves the length of curves
also preserves the first fundamental form. For this reason, properties of the surface
that only depend on the first fundamental form are called intrinsic properties. For
instance, we shall see in the next few sections that the value of a particular curvature
(the Gaussian curvature) is an intrinsic property which will allow us to determine,
without leaving our planet, whether the Earth is flat or not.

The maps between surfaces preserving the first fundamental form deserve a
special name:

Definition 3.3. Let H : S1 → S2 be a C∞ map between two surfaces. We say
that H is an isometry at p ∈ S1 if for all v ∈ TpS1 we have

IH(p)

(
dHp(v)

)
= Ip(v) ;

clearly (why?) this implies that〈
dHp(v),dHp(w)

〉
H(p)

= 〈v, w〉p
for all v, w ∈ TpS1. We say that H is a local isometry at p ∈ S1 if p has a
neighborhood U such that H is an isometry at each point of U ; and that H is a
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local isometry if it is so at each point of S1. Finally, we say that H is an isometry
if it is both a global diffeomorphism and a local isometry.

Remark 3.5. If H : S1 → S2 is an isometry at p ∈ S1, the differential of H at
p is invertible, and so H is a diffeomorphism of a neighborhood of p in S1 with a
neighborhood of H(p) in S2.

Remark 3.6. Isometries preserve the lenght of curves, and consequently all
intrinsic properties of surfaces.

Example 3.8. Denote by S1 ⊂ R3 the plane {z = 0}, by S2 ⊂ R3 the
cylinder of equation x2 + y2 = 1, and let H : S1 → S2 be the map given by
H(x, y, 0) = (cosx, sinx, y). As seen in Example 2.21, the tangent plane to S1

at any of its points is S1 itself. Moreover, we have

dHp(v) = v1
∂H

∂x
(p) + v2

∂H

∂y
(p) = (−v1 sinx, v1 cosx, v2)

for all p = (x, y, 0) ∈ S1 and v = (v1, v2, 0) ∈ TpS1. Hence,

IH(p)

(
dHp(v)

)
= ‖dHp(v)‖2 = v2

1 + v2
2 = ‖v‖2 = Ip(v) ,

and so H is a local isometry. On the other hand, H is not an isometry, because it
is not injective.

Definition 3.4. We shall say that a surface S1is locally isometric to a surface
S2 if for all p ∈ S1 there exists an isometry of a neighborhood of p in S1 with an
open subset of S2.

Remark 3.7. Warning: being locally isometric is not an equivalence relation;
see Exercise 3.8.

Two surfaces are locally isometric if and only if they have (in suitable local
parametrizations) the same metric coefficients:

Proposition 3.1. Let S, S̃ ⊂ R3 be two surfaces. Then S is locally isometric
to S̃ if and only if for every point p ∈ S there exist a point p̃ ∈ S̃, an open
subset U ⊆ R2, a local parametrization ϕ : U → S of S centered at p, and a local
parametrization ϕ̃ : U → S̃ of S̃ centered at p̃ such that E ≡ Ẽ, F ≡ F̃ and G ≡ G̃,
where E, F , G (respectively Ẽ, F̃ , G̃) are the metric coefficients of S with respect

to ϕ (respectively, of S̃ with respect to ϕ̃).

Proof. Assume that S is locally isometric to S̃. Then, given p ∈ S, we may
find a neighborhood V of p and an isometry H : V → H(V ) ⊆ S̃. Let ϕ : U → S
a local parametrization centered at p and such that ϕ(U) ⊂ V ; then ϕ̃ = H ◦ ϕ
is a local parametrization of S̃ centered at p̃ = H(p) with the required properties
(check, please).

Conversely, assume that there exist two local parametrizations ϕ and ϕ̃ as
stated, and set H = ϕ̃ ◦ ϕ−1 : ϕ(U) → ϕ̃(U). Clearly, H is a diffeomorphism with
its image; we have to prove that it is an isometry. Take q ∈ ϕ(U) and v ∈ TqS, and

write v = v1∂1 + v2∂2. By construction (see Remark 2.24) we have dHq(∂j) = ∂̃j ;

so dHq(v) = v1∂̃1 + v2∂̃2; hence

IH(q)

(
dHq(v)

)
= v2

1Ẽ
(
ϕ̃−1◦H(q)

)
+2v1v2F̃

(
ϕ̃−1◦H(q)

)
+v2

2G̃
(
ϕ̃−1◦H(q)

)
= v2

1E
(
ϕ−1(q)

)
+ 2v1v2F

(
ϕ−1(q)

)
+ v2

2G
(
ϕ−1(q)

)
= Iq(v) ,

and so H is an isometry, as required. �
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Example 3.9. As a consequence, a plane and a right circular cylinder are
locally isometric, due to the previous proposition and Examples 3.1 and 3.3 (see
also Example 3.8). On the other hand, they cannot be globally isometric, since
they are not even homeomorphic (a parallel of the cylinder disconnects it into two
components neither of which has compact closure, a thing impossible in the plane
due to the Jordan curve theorem).

If you are surprised to find out that the plane and the cylinder are locally
isometric, wait till you see next example:

Example 3.10. Every helicoid is locally isometric to a catenoid. Indeed, let S
be a helicoid parametrized as in Example 3.5, and let S̃ be the catenoid correspond-
ing to the same value of the parameter a ∈ R∗, parametrized as in Example 3.6.
Choose a point p0 = ϕ(x0, y0) ∈ S, and let χ : R × (0, 2π) → R2 be given by
χ(x, y) = (y − π + x0, a sinhx). Clearly, χ is a diffeomorphism with its image, so
ϕ ◦ χ is a local parametrization at p of the helicoid. The metric coefficients with
respect to this parametrization are

E = a2 cosh2 x, F ≡ 0, G = a2 cosh2 x ,

so Proposition 3.1 ensures that the helicoid is locally isometric to the catenoid. In
an analogous way (exercise) it can be proved that the catenoid is locally isometric
to the helicoid.

So surfaces having a completely different appearance from outside may well be
isometric, and so intrinsically indistinguishable. But if so, how do we tell that two
surfaces are not locally isometric? Could even the plane and the sphere turn out to
be locally isometric? One of the main goals of this chapter is to give a first answer
to such questions: we shall construct a function, the Gaussian curvature, defined
independently of any local parametrization, measuring intrinsic properties of the
surface, so surfaces with significantly different Gaussian curvatures cannot be even
locally isometric.

By the way, we would like to remind you that one of the problems that prompted
the development of differential geometry was the creation of geographical maps. In
our language, a geographical map is a diffeomorphism between an open subset of
a surface and an open subset of the plane (in other words, the inverse of a local
parametrization) preserving some metric properties of the surface. For instance,
a geographical map with a 1:1 scale (a full-scale map) is an isometry of an open
subset of the surface with an open subset of the plane. Of course, full-scale maps
are not terribly practical; usually we prefer smaller-scale maps. This suggests the
following

Definition 3.5. A similitude with scale factor r > 0 between two surfaces is
a diffeomorphism H : S1 → S2 such that

IH(p)

(
dHp(v)

)
= r2Ip(v)

for all p ∈ S1 and v ∈ TpS1.

A similitude multiplies the length of curves by a constant factor, the scale factor,
and so it is ideal for road maps. Unfortunately, as we shall see (Corollary 3.2),
similitudes between open subsets of surfaces and open subsets of the plane are
very rare. In particular, we shall prove that there exist no similitudes between
open subsets of the sphere and open subsets of the plane, so a perfect road map
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is impossible (the maps we normally use are just approximations). A possible
replacement (which is actually used in map-making) is given by conformal maps,
that is, diffeomorphisms preserving angles; see Exercises 3.61 and 3.62.

While we are at it, let us conclude this section talking about angles:

Definition 3.6. Let S ⊂ R3 be a surface, and p ∈ S. A determination of the
angle between two tangent vectors v1, v2 ∈ TpS is a θ ∈ R such that

cos θ =
〈v1, v2〉p√
Ip(v1)Ip(v2)

.

Moreover, if σ1, σ2 : (−ε, ε) → S are curves with σ1(0) = σ2(0) = p, we shall call
(determination of the) angle between σ1 and σ2 at p the angle between σ′1(0) and
σ′2(0).

In the plane the Cartesian axes meet (usually) at a right angle. Local pa-
rametrizations with an analogous property are very useful, and deserve a special
name:

Definition 3.7. We shall say that a local parametrization ϕ of a surface S is
orthogonal if its coordinate curves meet at a right angle, that is, if ∂1|p and ∂2|p
are orthogonal for each p in the image of ϕ.

Remark 3.8. The tangent vectors to coordinate curves are ∂1 and ∂2; so the
cosine of the angle between two coordinate curves is given by F/

√
EG, and a local

parametrization is orthogonal if and only if F ≡ 0. It is possible to show that
orthogonal parametrizations always exist.

Example 3.11. Parallels and meridians are the coordinate curves of the local
parametrizations of the surfaces of revolution seen in Example 2.8, and so these
parametrizations are orthogonal thanks to Example 3.7.

3.2. Area

The first fundamental form also allows us to compute the area of bounded
regions of a regular surface. For the sake of simplicity, we shall confine our treatment
to the case of regions contained in the image of a local parametrization.

Let us begin by defining the regions whose area we want to measure.

Definition 3.8. Let σ : [a, b] → S be a piecewise regular curve parametrized
by arc length in a surface S ⊂ R3, and let a = s0 < s1 < · · · < sk = b be a partition
of [a, b] such that σ|[sj−1,sj ] is regular for j = 1, . . . , k. As for plane curves, we set

σ̇(s−j ) = lim
s→s−j

σ̇(s) and σ̇(s+
j ) = lim

s→s+j
σ̇(s) ;

σ̇(s−j ) and σ̇(s+
j ) are (in general) distinct vectors of Tσ(sj)S. Of course, σ̇(s−0 ) and

σ̇(s+
k ) are not defined unless the curve is closed, in which case we set σ̇(s−0 ) = σ̇(s−k )

and σ̇(s+
k ) = σ̇(s+

0 ). We shall say that σ(sj) is a vertex of σ if σ̇(s−j ) 6= σ̇(s+
j ), and

that it is a cusp of σ if σ̇(s−j ) = −σ̇(s+
j ). A curvilinear polygon in S is a closed

simple piecewise regular curve parametrized by arc length without cusps.

Definition 3.9. A regular region R ⊆ S of a surface S is a connected com-
pact subset of S obtained as the closure of its interior R̊ and whose boundary is
parametrized by finitely many curvilinear polygons with disjoint supports. If S is
compact, then R = S is a regular region of S with empty boundary.
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S

pj+TpjS
pjRj

Rj

Figure 1

To define the length of a curve we approximated it with a polygonal closed
curve; to define the area of a region we shall proceed in a similar way.

Definition 3.10. Let R ⊆ S be a regular region of a surface S. A partition
of R is a finite family R = {R1, . . . , Rn} of regular regions contained in R with
Ri ∩ Rj ⊆ ∂Ri ∩ ∂Rj for all 1 ≤ i 6= j ≤ n and such that R = R1 ∪ · · · ∪ Rn.

The diameter ‖R‖ of a partition R is the maximum of the diameters (in R3) of the

elements of R. Another partition R̃ = {R̃1, . . . , R̃m} of R is said to be a refinement

of R if for all i = 1, . . . ,m there exists a 1 ≤ j ≤ n such that R̃i ⊆ Rj . Finally, a
pointed partition of R is given by a partition R = {R1, . . . , Rn} of R and a n-tuple
~p = (p1, . . . , pn) of points of R such that pj ∈ Rj for j = 1, . . . , n.

Definition 3.11. Let R ⊆ S be a regular region of a surface S, and (R, ~p) a
pointed partition of R. For all Rj ∈ R, denote by Rj the orthogonal projection of

Rj on the affine tangent plane pj + TpjS (see Fig. 1), and by Area(Rj) its area.
The area of the pointed partition (R, ~p) is defined as

Area(R, ~p) =
∑
Rj∈R

Area(Rj) .

We say that the region R is rectifiable if the limit

Area(R) = lim
‖R‖→0

Area(R, ~p)

exists and is finite. This limit shall be the area of R.

To prove that every regular region contained in the image of a local parametriza-
tion is rectifiable we shall need the classical Change of Variables Theorem for mul-
tiple integrals (see [3, Theorem 5.8, p. 211]):

Theorem 3.1. Let h : Ω̃ → Ω be a diffeomorphism between open sets of Rn.
Then, for each regular region R ⊂ Ω and each continuous function f : R → R we
have ∫

h−1(R)

(f ◦ h) |det Jac(h)|dx1 · · · dxn =

∫
R

f dx1 · · · dxn .

We shall also need an interesting General Topology result:

Theorem 3.2. Let U = {Uα}α∈A be an open cover of a compact metric space
(X, d). Then there exists a number δ > 0 such that for all x ∈ X there is α ∈ A
such that Bd(x, δ) ⊂ Uα, where Bd(x, δ) is the open ball with center x and radius δ
with respect to distance d.
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Proof. Let {U1, . . . , Un} be a fixed finite subcover of U. For all α = 1, . . . , n
define the continuous function fα : X → R by setting

fα(x) = d(x,X \ Uα) ,

and set f = max{f1, . . . , fn}. The function f is continuous; moreover, for each
x ∈ X we can find 1 ≤ α ≤ n such that x ∈ Uα, and so f(x) ≥ fα(x) > 0. Hence,
f > 0 everywhere; let δ > 0 be the minimum of f in X. Then for all x ∈ X we can
find 1 ≤ α ≤ n such that fα(x) ≥ δ, and so the open ball with center x and radius
δ is completely contained in Uα, as required. �

Then:

Theorem 3.3. Let R ⊆ S be a regular region contained in the image of a local
parametrization ϕ : U → S of a surface S. Then R is a rectifiable and

(28) Area(R) =

∫
ϕ−1(R)

√
EG− F 2 dx1 dx2 .

Proof. Let R0 ⊆ R be a regular region contained in R, and consider a point
p0 ∈ R0; our first goal is to describe the orthogonal projection R0 of R0 in p0+Tp0S.
If p0 = ϕ(x0), an orthonormal basis of Tp0S is given by the vectors

~ε1 =
1√
E(x0)

∂1(x0) ,

~ε2 =

√
E(x0)

E(x0)G(x0)− F (x0)2

(
∂2(x0)− F (x0)

E(x0)
∂1(x0)

)
.

It follows (exercise) that the orthogonal projection πx0
: R3 → p0 + Tp0S is given

by the formula

πx0
(q) = p0 +

1√
E(x0)

〈q − p0, ∂1(x0)〉~ε1

+

√
E(x0)

E(x0)G(x0)− F (x0)2

〈
q − p0, ∂2(x0)− F (x0)

E(x0)
∂1(x0)

〉
~ε2 .

Denote now by ψx0
: p0 + Tp0S → R2 the map sending each p ∈ p0 + Tp0S to

the coordinates of p − p0 with respect to the basis {~ε1,~ε2}; since the latter is an
orthonormal basis, ψx0 preserves areas.

Set now hx = ψx◦πx◦ϕ; let Φ: U×U → R2×U be the map Φ(x, y) =
(
hx(y), x

)
.

It is immediate to verify that

(29) det Jac(Φ)(x0, x0) = det Jac(hx0)(x0) =
√
E(x0)G(x0)− F (x0)2 > 0 ;

so, for all x0 ∈ U there exists a neighborhood Vx0 ⊆ U of x0 such that Φ|Vx0×Vx0
is a diffeomorphism with its image. Recalling the definition of Φ, this implies
that hx|Vx0 is a diffeomorphism with its image for all x ∈ Vx0

. In particular, if

R0 = ϕ(Q0) ⊂ ϕ(U) is a regular region with Q0 ⊂ Vx0
and x ∈ Q0 then the

orthogonal projection R0 of R0 on ϕ(x) + Tϕ(x)S is given by πx ◦ ϕ(Q0) and, since
ψx preserves areas, Theorem 3.1 implies

(30) Area(R0) = Area
(
hx(Q0)

)
=

∫
Q0

|det Jac(hx)|dy1dy2 .
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Let R ⊂ ϕ(U) be an arbitrary regular region, and Q = ϕ−1(R). Given ε > 0,
we want to find a δ > 0 such that for each pointed partition (R, ~p) of R with
diameter less than δ we have∣∣∣∣Area(R, ~p)−

∫
Q

√
EG− F 2 dy1 dy2

∣∣∣∣ < ε .

The family V = {Vx | x ∈ Q} is an open cover of the compact set Q; let δ0 > 0 be
the Lebesgue number (Theorem 3.2) of V. Let now Ψ: Q×Q→ R be given by

Ψ(x, y) = |det Jac(hx)(y)| −
√
E(y)G(y)− F (y)2 .

By (29) we know that Ψ(x, x) ≡ 0; so the uniform continuity provides us with a
δ1 > 0 such that

|y − x| < δ1 =⇒ |Ψ(x, y)| < ε/Area(Q) .

Finally, the uniform continuity of ϕ−1|R provides us with a δ > 0 such that if
R0 ⊆ R has diameter less than δ then ϕ−1(R0) has diameter less than min{δ0, δ1}.

Let then (R, ~p), with R = {R1, . . . , Rn} and ~p = (p1, . . . , pn), be a pointed
partition of R with diameter less than δ, and set Qj = ϕ−1(Rj) and xj = ϕ−1(pj).
Since each Qj has diameter less than δ0, we may use formula (30) to compute the

area of each Rj . Hence,∣∣∣∣Area(R, ~p)−
∫
Q

√
EG− F 2 dy1 dy2

∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

∫
Qj

|det Jac(hxj )|dy1dy2 −
∫
Q

√
EG− F 2 dy1 dy2

∣∣∣∣∣∣
≤

n∑
j=1

∫
Qj

|Ψ(xj , y)|dy1 dy2 <

n∑
j=1

ε

Area(Q)
Area(Qj) = ε ,

since each Qj has diameter less than δ1, and we are done. �

A consequence of this result is that the value of the integral in the right hand
side of (28) is independent of the local parametrization whose image contains R.
We are going to conclude this section by generalizing this result in a way that will
allow us to integrate functions on a surface. We shall need a lemma containing two
formulas that will be useful again later on:

Lemma 3.1. Let ϕ : U → S be a local parametrization of a surface S. Then

(31) ‖∂1 ∧ ∂2‖ =
√
EG− F 2 ,

where ∧ is the vector product in R3. Moreover, if ϕ̂ : Û → S is another local
parametrization with V = ϕ̂(Û) ∩ ϕ(U) 6= ∅, and h = ϕ̂−1 ◦ ϕ|ϕ−1(V ), then

(32) ∂1 ∧ ∂2|ϕ(x) = det Jac(h)(x) ∂̂1 ∧ ∂̂2|ϕ̂◦h(x)

for all x ∈ ϕ−1(V ), where {∂̂1, ∂̂2} is the basis induced by ϕ̂.

Proof. Formula (31) follows from equality

‖~v ∧ ~w‖2 = ‖~v‖2‖~w‖2 − |〈~v, ~w〉|2,
which holds for any pair ~v, ~w of vectors of R3.
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Furthermore, we have seen (Remark 2.21) that

∂j |ϕ(x) =
∂x̂1

∂xj
∂̂1|ϕ(x) +

∂x̂2

∂xj
∂̂2|ϕ(x) ,

and so (32) immediately follows. �

As a consequence we find:

Proposition 3.2. Let R ⊆ S be a regular region of a surface S, and f : R→ R
a continuous function. Assume that there exists a local parametrization ϕ : U → S
of S such that R ⊂ ϕ(U). Then the integral∫

ϕ−1(R)

(f ◦ ϕ)
√
EG− F 2 dx1 dx2

does not depend on ϕ.

Proof. Assume that ϕ̂ : Ũ → S is another local parametrization such that
R ⊂ ϕ̂(Ũ), and set h = ϕ̂−1 ◦ ϕ. Then the previous lemma and Theorem 3.1 yield∫

ϕ−1(R)

(f ◦ ϕ)
√
EG− F 2 dx1 dx2 =

∫
ϕ−1(R)

(f ◦ ϕ)‖∂1 ∧ ∂2‖ dx1 dx2

=

∫
ϕ−1(R)

[
(f ◦ ϕ̂)‖∂̂1 ∧ ∂̂2‖

]
◦ h |det Jac(h)|dx1 dx2

=

∫
ϕ̂−1(R)

(f ◦ ϕ̂)

√
ÊĜ− F̂ 2 dx1 dx2 .

�

We may then give the following definition of integral on a surface:

Definition 3.12. Let R ⊆ S be a regular region of a surface S contained in
the image of a local parametrization ϕ : U → S. Then for all continuous functions
f : R→ R the integral of f on R is the number∫

R

f dν =

∫
ϕ−1(R)

(f ◦ ϕ)
√
EG− F 2 dx1 dx2 .

We conclude this section by proving an analogue for surfaces of the Change of
Variables Theorem for multiple integrals.

Proposition 3.3. Let F : S̃ → S be a diffeomorphism between surfaces, and
R ⊆ S a regular region contained in the image of a local parametrization ϕ : U → S
and such that F−1(R) is also contained in the image of a local parametrization

ϕ̃ : Ũ → S̃. Then, for all continuous f : R→ R, we have∫
F−1(R)

(f ◦ F )|det dF |dν̃ =

∫
R

f dν .

Proof. Set Ω = U and Ω̃ = ϕ̃−1
(
F−1

(
ϕ(U)

))
, so as to get ϕ−1(R) ⊂ Ω and

ϕ̃−1
(
F−1(R)

)
⊂ Ω̃; moreover, h = ϕ−1 ◦ F ◦ ϕ̃ : Ω̃ → Ω is a diffeomorphism. Set

ϕ̂ = F ◦ ϕ̃. Then ϕ̂ is a local parametrization of S, whose local basis {∂̂1, ∂̂2} can be

obtained from the local basis {∂̃1, ∂̃2} by the formula ∂̂j = dF (∂̃j). In particular,

‖∂̃1 ∧ ∂̃2‖ |det dF | ◦ ϕ̃ = ‖∂̂1 ∧ ∂̂2‖ ◦ ϕ̂ = |det Jac(h)| ‖∂1 ∧ ∂2‖ ◦ h ,
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by (32). Then Theorem 3.1 and (31) imply∫
F−1(R)

(f ◦ F ) |det dF |dν̃

=

∫
ϕ̂−1(R)

(f ◦ ϕ̂)|det dF | ◦ ϕ̃
√
ẼG̃− F̃ 2 dx1dx2

=

∫
h−1(ϕ−1(R))

(f ◦ ϕ ◦ h)| ‖∂1 ∧ ∂2‖ ◦ h|det Jac(h)|dx1 dx2

=

∫
ϕ−1(R)

(f ◦ ϕ)
√
EG− F 2 dx1dx2 =

∫
R

f dν .

�

3.3. Orientability

Orientability is an important notion in the theory of surfaces. To put it simply,
a surface is orientable if it has two faces, an internal one and an external one, like
the sphere, whereas it is non orientable, like the Möbius band (see Example 3.15),
if it has only one face, and no well-defined exterior or interior.

There are (at least) two ways to define precisely the notion of orientation:
an intrinsic one, and one depending on the embedding of the surface in R3. To
describe the first one, recall that orienting a plane means choosing an ordered
basis for it (that is, fixing a preferred rotation direction for the angles); two bases
determine the same orientation if and only if the change of basis matrix has positive
determinant (see [4, p. 167] or [2, p. 57]). So the idea is that a surface is orientable
if we may orient in a consistent way all its tangent planes. Locally this is not
a problem: just choose a local parametrization and orient each tangent plane of
the support by taking as orientation the one given by the (ordered) basis {∂1, ∂2}
induced by the parametrization. Since the vectors ∂1 and ∂2 vary in a C∞ way, we
can sensibly say that all tangent planes of the support of the parametrization are
now oriented consistently. Another parametrization induces the same orientation if
and only if the change of basis matrix (that is, the Jacobian matrix of the change of
coordinates; see Remark 2.21) has positive determinant. So the following definition
becomes natural:

Definition 3.13. Let S ⊂ R3 be a surface. We say that two local param-
etrizations ϕα : Uα → S and ϕβ : Uβ → S determine the same orientation (or are

equioriented) if either ϕα(Uα)∩ϕβ(Uβ) = ∅ or det Jac(ϕ−1
β ◦ϕα) > 0 where it is de-

fined, that is, on ϕ−1
α

(
ϕα(Uα)∩ϕβ(Uβ)

)
. If, on the other hand, det Jac(ϕ−1

β ◦ϕα) < 0
where it is defined, the two local parametrizations determine opposite orientations.
The surface S is said to be orientable if there exists an atlas A = {ϕα} for S
consisting of local parametrizations pairwise equioriented (and we shall say that
the atlas itself is oriented). If we fix such an atlas A, we say that the surface S is
oriented by the atlas A.

Remark 3.9. Warning: it may happen that a pair of local parametrizations nei-
ther determine the same orientation nor opposite orientations. For instance, it may
happen that ϕα(Uα)∩ϕβ(Uβ) has two connected components with det Jac(ϕ−1

β ◦ϕα)
positive on one of them and negative on the other one; see Example 3.15.



3.3. ORIENTABILITY 93

Recalling what we said, we may conclude that a surface S is orientable if and
only if we may simultaneously orient all its tangent planes in a consistent way.

Example 3.12. A surface admitting an atlas consisting of a single local pa-
rametrization is clearly orientable. For instance, all surfaces given as graphs of
functions are orientable.

Example 3.13. If a surface has an atlas consisting of two local parametrizations
whose images have connected intersection, it is orientable. Indeed, the determinant
of the Jacobian matrix of the change of coordinates has (why?) constant sign
on the intersection, so up to exchanging the coordinates in the domain of one of
the parametrizations (an operation that changes the sign of the determinant of
the Jacobian matrix of the change of coordinates), we may always assume that
both parametrizations determine the same orientation. For instance, the sphere is
orientable (see Example 2.6).

Remark 3.10. Orientability is a global property: we cannot verify if a surface
is orientable just by checking what happens on single local parametrizations. The
image of a single local parametrization is always orientable; the obstruction to
orientability (if any) is related to the way local parametrizations are joined.

This definition of orientation is purely intrinsic: it does not depend on the way
the surface is immersed in R3. In particular, if two surfaces are diffeomorphic, the
first one is orientable if and only if the other one is (exercise). As already mentioned,
the second definition of orientation will be instead extrinsic: it will strongly depend
on the fact that a surface is contained in R3.

When we studied Jordan curves in the plane, we saw that the normal versor
allowed us to distinguish the interior of the curve from its exterior. So, it is natural
to try and introduce the notions of interior and exterior of a surface by using normal
versors:

Definition 3.14. A normal vector field on a surface S ⊂ R3 is a C∞ map
N : S → R3 such that N(p) is orthogonal to TpS for all p ∈ S; see Fig. 2. If,
moreover, ‖N‖ ≡ 1 we shall say that N is normal versor field to S.

If N is a normal versor field on a surface S, we may intuitively say that N
indicates the external face of the surface, while −N indicates the internal face.
But, in contrast to what happens for curves, not every surface as a normal vector
field:

Proposition 3.4. A surface S ⊂ R3 is orientable if and only if there exists a
normal versor field on S.

Proof. We begin with a general remark. Let ϕα : Uα → S be a local param-
etrization of a surface S; for all p ∈ ϕα(Uα) set

Nα(p) =
∂1,α ∧ ∂2,α

‖∂1,α ∧ ∂2,α‖
(p) ,

where ∂j,α = ∂ϕα/∂xj , as usual. Since {∂1,α, ∂2,α} is a basis of TpS, the ver-
sor Nα(p) is well defined, different from zero, and orthogonal to TpS; moreover,
it clearly is of class C∞, and so Nα is a normal versor field on ϕα(Uα). No-
tice furthermore that if ϕβ : Uβ → S is another local parametrization such that
ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅ then (32) implies

(33) Nα = sgn
(
det Jac(ϕ−1

β ◦ ϕα)
)
Nβ
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Figure 2. A normal vector field

on ϕα(Uα) ∩ ϕβ(Uβ).
Assume now S to be orientable, and let A = {ϕα} be an oriented atlas. If

p ∈ ϕα(Uα)∩ϕβ(Uβ), with ϕα, ϕβ ∈ A, equality (33) tells us that Nα(p) = Nβ(p);
so the map p 7→ Nα(p) does not depend on the particular local parametrization we
have chosen, and defines a normal versor field on S.

Conversely, let N : S → R3 be a normal versor field on S, and let A = {ϕα}
be an arbitrary atlas of S such that the domain Uα of each ϕα is connected. By
definition of vector product, Nα(p) is orthogonal to TpS for all p ∈ ϕα(Uα) and
ϕα ∈ A; so 〈N,Nα〉 ≡ ±1 on each Uα. Since Uα is connected, up to modifying ϕα
by exchanging coordinates in Uα, we may assume that all these scalar products are
identically equal to 1. Hence,

Nα ≡ N
on each Uα, and (33) implies that the atlas is oriented. �

Definition 3.15. Let S ⊂ R3 be a surface oriented by an atlas A. A normal
versor field N will be said to determine the (assigned) orientation if

N =
∂1 ∧ ∂2

‖∂1 ∧ ∂2‖
for any local parametrization ϕ ∈ A.

A consequence of the latter proposition is that if S is an oriented surface then
there exists always (why?) a unique normal versor field determining the assigned
orientation.
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Figure 3. The Möbius band

Example 3.14. Every surface of revolution S is orientable. Indeed, we may
define a normal versor field N : S → S2 by setting

N(p) =
∂

∂t

∣∣∣∣
p

∧ ∂

∂θ

∣∣∣∣
p

/ ∥∥∥∥∥ ∂∂t
∣∣∣∣
p

∧ ∂

∂θ

∣∣∣∣
p

∥∥∥∥∥
=

1√(
α′(t)

)2
+
(
β′(t)

)2
∣∣∣∣∣∣
−β′(t) cos θ
−β′(t) sin θ

α′(t)

∣∣∣∣∣∣
for all p = ϕ(t, θ) ∈ S, where ϕ : R2 → S is the immersed surface with support S
defined in Example 2.8, and we used Example 2.24.

Definition 3.16. Let S ⊂ R3 be an oriented surface, and N : S → S2 a normal
versor field that determines the assigned orientation. If p ∈ S, we shall say that a
basis {v1, v2} of TpS is positive (respectively, negative) if the basis {v1, v2, N(p)} of

R3 has the same orientation (respectively, the opposite orientation) as the canonical
basis of R3.

In particular, a local parametrization ϕ : U → S determines the orientation
assigned on S if and only if (why?) {∂1|p, ∂2|p} is a positive basis of TpS for
all p ∈ ϕ(U).

As mentioned above, not every surface is orientable. The most famous example
of non orientable surface is the Möbius band.

Example 3.15 (The Möbius band). Let C be the circle in the xy-plane with
center in the origin and radius 2, and `0 the line segment in the yz-plane given
by y = 2 and |z| < 1, with center in the point c = (0, 2, 0). Denote by `θ the line
segment obtained by rotating c clock-wise along C by an angle θ and simultaneously
rotating `0 around c by an angle θ/2. The union S =

⋃
θ∈[0,2π] `θ is the Möbius

band (Fig. 3); we are going to prove that it is a non orientable surface.
Set U = {(u, v) ∈ R2 | 0 < u < 2π,−1 < v < 1}, and define ϕ, ϕ̂ : U → S by

ϕ(u, v) =
((

2− v sin
u

2

)
sinu,

(
2− v sin

u

2

)
cosu, v cos

u

2

)
,

ϕ̂(u, v) =

((
2− v sin

2u+ π

4

)
cosu,

(
−2 + v sin

2u+ π

4

)
sinu, v cos

2u+ π

4

)
.

It is straightforward to verify (exercise) that {ϕ, ϕ̂} is an atlas for S, consisting of
two local parametrizations whose images have disconnected intersection: indeed,
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ϕ(U) ∩ ϕ̂(U) = ϕ(W1) ∪ ϕ(W2), with

W1 = {(u, v) ∈ U | π/2 < u < 2π} and W2 = {(u, v) ∈ U | 0 < u < π/2} .
Now, if (u, v) ∈ W1 we have ϕ(u, v) = ϕ̂(u − π/2, v), while if (u, v) ∈ W2 we have
ϕ(u, v) = ϕ̂(u+ 3π/2,−v); so

ϕ̂−1 ◦ ϕ(u, v) =

{
(u− π/2, v) if (u, v) ∈W1 ,

(u+ 3π/2,−v) if (u, v) ∈W2 .

In particular,

det Jac(ϕ̂−1 ◦ ϕ) ≡
{

+1 on W1 ,

−1 on W2 .

Now, assume by contradiction that S is orientable, and let N be a normal versor
field on S. Up to inverting the sign of N , we may assume that N is given by
∂u∧∂v/‖∂u∧∂v‖ on ϕ(U), where ∂u = ∂ϕ/∂u and ∂v = ∂ϕ/∂v. On the other hand,

we have N = ±∂̂u ∧ ∂̂v/‖∂̂u ∧ ∂̂v‖ on ϕ̂(U), where ∂̂u = ∂ϕ̂/∂u and ∂̂v = ∂ϕ̂/∂v,
and the sign is constant because U is connected. But (33) applied to W1 tells us
that the sign should be +1, whereas applied to W2 yields −1, contradiction.

Let us remark explicitly that the Möbius band is not a closed surface in R3.
This is crucial: indeed, it is possible to prove that every closed surface in R3 is
orientable.

Finally, a large family of orientable surfaces is provided by the following

Corollary 3.1. Let a ∈ R be a regular value for a function f : Ω → R of
class C∞, where Ω ⊆ R3 is an open set. Then every connected component S of
f−1(a) is orientable, and a normal versor field is given by N = ∇f/‖∇f‖.

Proof. It immediately follows from Proposition 2.7. �

It is possible to show that a converse of this corollary: if S ⊂ R3 is an orientable
surface and Ω ⊆ R3 an open set containing containing S such that S is closed in Ω
with Ω \ S disconnected then there exists a function f ∈ C∞(Ω) such that S is a
level surface for f .

3.4. Normal curvature and second fundamental form

As you have undoubtedly already imagined, one of the main questions differ-
ential geometry has to answer is how to measure the curvature of a surface. The
situation is quite a bit more complicated than for curves, and as a consequence
the answer is not only more complex, but it is not even unique: there are several
meaningful ways to measure the curvature of a surface, and we shall explore them
in detail in the rest of this chapter.

The first natural remark is that the curvature of a surface, whatever it might
be, is not constant in all directions. For instance, a circular cylinder is not curved
in the direction of the generatrix, whereas it curves along the directions tangent to
the parallels. So it is natural to say that the curvature of the cylinder should be
zero in the direction of the generatrix, whereas the curvature in the direction of the
parallels should be the same as that of the parallels themselves, that is, the inverse
of the radius. And what about other directions? Looking at the cylinder, we would
guess that its curvature is maximal in the direction of the parallel, minimal in the
direction of the generatrix, and takes intermediate values in the other directions.
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To compute it, we might for instance consider a curve contained in the surface,
tangent to the direction we have chosen; at the very least, this is an approach that
works for generatrices and parallels. The problem is: which curve? A priori (and
a posteriori too, as we shall see), if we choose a random curve the curvature might
depend on some property of the curve and not only on the surface S and on the
tangent direction v we are interested in. So we need a procedure yielding a curve
depending only on S and v and representing appropriately the geometry of the
surface along that direction. The next lemma describes how to do this:

Lemma 3.2. Let S be a surface, p ∈ S and choose a versor N(p) ∈ R3 orthog-
onal to TpS. Given v ∈ TpS of length 1, let Hv be the plane passing through p and
parallel to v and N(p). Then the intersection Hv ∩ S is, at least in a neighborhood
of p, the support of a regular curve.

Proof. The plane Hv has equation 〈x− p, v ∧N(p)〉 = 0. So if ϕ : U → S is a
local parametrization centered at p, a point ϕ(y) ∈ ϕ(U) belongs to Hv ∩ S if and
only if y ∈ U satisfies the equation f(y) = 0, where

f(y) = 〈ϕ(y)− p, v ∧N(p)〉 .
If we prove that C = {y ∈ U | f(y) = 0} is the support of a regular curve σ near O,
we are done, as Hv ∩ ϕ(U) = ϕ(C) is in this case the support of the regular curve
ϕ ◦ σ near p.

Now,
∂f

∂yi
(O) = 〈∂i|p, v ∧N(p)〉 ;

so if O were a critical point of f , the vector v ∧N(p) would be orthogonal to both
∂1|p and ∂2|p, and hence orthogonal to TpS, that is, parallel to N(p), whereas it is
not. So O is not a critical point of f , and by Proposition 1.2 we know that C is a
graph in a neighborhood of O. �

Definition 3.17. Let S be a surface. Given p ∈ S, choose a versor N(p) ∈ R3

orthogonal to TpS. Take v ∈ TpS of length one, and let Hv be the plane through p
and parallel to v and N(p). The regular curve σ, parametrized by arc length, with
σ(0) = p whose support is the intersection Hv ∩ S in a neighborhood of p is the
normal section of S at p along v (see Fig. 4). Since Span{v,N(p)} ∩ TpS = Rv,
the tangent versor of the normal section at p has to be ±v; we shall orient the
normal section curve so that σ̇(0) = v. In particular, σ is uniquely defined in a
neighborhood of 0 (why?).

The normal section is a curve that only depends on the geometry of the surface
S in the direction of the tangent versor v; so we may try and use it to give a
geometric definition of the curvature of a surface.

Definition 3.18. Let S be a surface, p ∈ S and let N(p) ∈ R3 be a versor
orthogonal to TpS. Given v ∈ TpS of length 1, orient the plane Hv by choosing
{v,N(p)} as positive basis. The normal curvature of S at p along v is the oriented
curvature at p of the normal section of S at p along v (considerered as a plane curve
contained in Hv) .

Remark 3.11. Clearly, the normal section curve does not depend on the choice
of the particular versor N(p) orthogonal to TpS. The normal curvature, on the other
hand, does: if we substitute −N(p) for N(p), the normal curvature changes sign
(why?).
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S

N(p)

v

Hv

p

σ

Figure 4. Normal section

It is straightforward to verify (do it!) that the normal curvature of a right
circular cylinder with radius r > 0 is actually zero along the directions tangent
to the generatrices, and equals ±1/r along the directions tangent to the parallels
(which are normal sections); computing the curvature along other directions is
however more complicated. For the cylinder the other normal sections are ellipses,
so it can somehow be done; but for an arbitrary surface the problem becomes
harder, as normal section curves are defined only implicitly (as the intersection of a
plane and a surface), and so computing their oriented curvature might not be easy.

To solve this problem (and, as you will see, we shall solve it and obtain simple
explicit formulas to compute normal curvatures), let us introduce a second way to
study the curvature of a surface. In a sense, the curvature of a curve is a measure of
the variation of its tangent line; the curvature of a surface might then be a measure
of the variation of its tangent plane. Now, the tangent line to a curve is determined
by the tangent versor, that is, by a vector-valued map, uniquely defined up to
sign, so measuring the variation of the tangent line is equivalent to differentiating
this map. Instead, at first glance we might think that to determine the tangent
plane might be necessary to choose a basis, and this choice is anything but unique.
But, since we are talking about surfaces in R3, the tangent plane actually is also
determined by the normal versor, which is unique up to sign; so we may try to
measure the variation of the tangent plane by differentiating the normal versor.

Let us now try and make this argument formal and rigorous. As we shall see,
we shall actually obtain an effective way of computing the normal curvature; but
to get there we shall need a bit of work.

We begin with a crucial definition.

Definition 3.19. Let S ⊂ R3 be an oriented surface. The Gauss map of S is
the normal versor field N : S → S2 that identifies the given orientation.

Remark 3.12. Even if for the sake of simplicity we shall often work only
with oriented surfaces, much of what we are going to say in this chapter holds for
every surface. Indeed, every surface is locally orientable: if ϕ : U → S is a local
parametrization at a point p, then N = ∂1 ∧ ∂2/‖∂1 ∧ ∂2‖ is a Gauss map of ϕ(U).
Therefore every result of a local nature we shall prove by using Gauss maps and
that does not change by substituting −N for N actually holds for an arbitrary
surface.
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The Gauss map determines uniquely the tangent planes to the surface, since
TpS is orthogonal to N(p); so the variation of N measures how the tangent planes
change, that is, how far the surface is from being a plane (see also Exercise 3.18).

The argument presented above suggests that the curvature of a surface might
then be related to the differential of the Gauss map, just like the curvature of a
curve was related to the derivative of the tangent versor. To verify the correctness
of this guess, let us study some examples.

Example 3.16. In a plane parametrized as in Example 2.2 we have

N ≡ ~v1 ∧ ~v2

‖~v1 ∧ ~v2‖
,

so N is constant and dN ≡ O.

Example 3.17. Let S = S2. By using any of the parametrizations described in
Example 3.4 we find N(p) = p, a result consistent with Example 2.22. So the Gauss
map of the unit sphere is the identity map, and in particular we have dNp = id for
all p ∈ S2.

Example 3.18. Let S ⊂ R3 be a right circular cylinder of equation x2
1 +x2

2 = 1.
Corollary 3.1 tells us that a Gauss map of S is given by

N(p) =

∣∣∣∣∣∣
p1

p2

0

∣∣∣∣∣∣
for all p = (p1, p2, p3) ∈ S. In particular,

TpS = N(p)⊥ = {v ∈ R3 | v1p1 + v2p2 = 0} .

Moreover, as N is the restriction to S of a linear map of R3 in itself, we get (why?)
dNp(v) = (v1, v2, 0) for all v = (v1, v2, v3) ∈ TpS.

In particular, dNp(TpS) ⊆ TpS, and as an endomorphism of TpS the differen-
tial of the Gauss map has an eigenvalue equal to zero and one equal to 1. The
eigenvector corresponding to the zero eigenvalue is (0, 0, 1), that is, the direction
along which we already know the cylinder has zero normal curvature; the eigenvec-
tor corresponding to the eigenvalue 1 is tangent to the parallels of the cylinder, so
it is exactly the direction along which the cylinder has normal curvature 1. As we
shall see, this is not a coincidence.

Example 3.19. Let Γh ⊂ R3 be the graph of a function h : U → R, where
U ⊂ R2 is open, and let ϕ : U → Γh be the usual parametrization ϕ(x) =

(
x, h(x)

)
of Γh. Example 2.23 tells us that a Gauss map N : Γh → S2 of Γh is given by

N ◦ ϕ =
∂1 ∧ ∂2

‖∂1 ∧ ∂2‖
=

1√
1 + ‖∇h‖2

∣∣∣∣∣∣
−∂h/∂x1

−∂h/∂x2

1

∣∣∣∣∣∣ .
Let us compute how the differential of N acts on the tangent planes of Γh.



100 3. CURVATURES

Choose p = ϕ(x) ∈ Γh; recalling Remark 2.24 we get

dNp(∂j) =
∂(N ◦ ϕ)

∂xj
(x)

=
1

(1 + ‖∇h‖2)3/2

{[
∂h

∂x1

∂h

∂x2

∂2h

∂xj∂x2
−
(

1 +

(
∂h

∂x2

)2
)

∂2h

∂xj∂x1

]
∂1

+

[
∂h

∂x1

∂h

∂x2

∂2h

∂xj∂x1
−
(

1 +

(
∂h

∂x1

)2
)

∂2h

∂xj∂x2

]
∂2

}
;

in particular, dNp(TpΓh) ⊆ TpΓh for all p ∈ Γh.

Example 3.20. Let S be a helicoid, parametrized as in Example 3.5. Then

(N ◦ ϕ)(x, y) =
1√

a2 + y2

∣∣∣∣∣∣
−a sinx
a cosx
−y

∣∣∣∣∣∣ .
Let now p = ϕ(x0, y0) ∈ S, and take v = v1∂1 + v2∂2 ∈ TpS. Arguing as in the
previous example we find

dNp(v) = v1
∂(N ◦ ϕ)

∂x
(x0, y0) + v2

∂(N ◦ ϕ)

∂y
(x0, y0)

= − a

(a2 + y2
0)3/2

v2∂1 −
a

(a2 + y2
0)1/2

v1∂2 .

In particular, dNp(TpS) ⊆ TpS in this case too.

Example 3.21. Let S ⊂ R3 be a catenoid, parametrized as in Example 3.6.
Then

(N ◦ ψ)(x, y) =
1

coshx

∣∣∣∣∣∣
− cos y
− sin y
sinhx

∣∣∣∣∣∣ .
Let now p = ψ(x0, y0) ∈ S, and take w = w1∂1 + w2∂2 ∈ TpS. Then we get

dNp(w) =
w1

a cosh2 x0

∂1 −
w2

a cosh2 x0

∂2 .

In particular, dNp(TpS) ⊆ TpS, once again.

Example 3.22. Let S ⊂ R3 be a surface of revolution, oriented by the Gauss
map N : S → S2 we computed in Example 3.14. Then

dNp

(
∂

∂t

∣∣∣∣
p

)
=

β′α′′ − α′β′′(
(α′)2 + (β′)2

)3/2 ∂

∂t

∣∣∣∣
p

,

dNp

(
∂

∂θ

∣∣∣∣
p

)
=

−β′/α√
(α′)2 + (β′)2

∂

∂θ

∣∣∣∣
p

,

and again dNp(TpS) ⊆ TpS for all p ∈ S.

In all previous examples the differential of the Gauss map maps the tangent
plane of the surface in itself; this is not a coincidence. By definition, dNp maps TpS
in TN(p)S

2. But, as already remarked (Example 2.22), the tangent plane to the

sphere in a point is orthogonal to that point; so TN(p)S
2 is orthogonal to N(p), and

thus it coincides with TpS. Summing up, we may consider the differential of the
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Gauss map at a point p ∈ S as an endomorphism of TpS. And it is not just any
endomorphism: it is symmetric. To prove this, we need a result from Differential
Calculus (see [3, Theorem 3.3, p. 92]):

Theorem 3.4 (Schwarz). Let Ω ⊆ Rn be an open set and f ∈ C2(Ω). Then

∀i, j = 1, . . . , n
∂2f

∂xi∂xj
≡ ∂2f

∂xj∂xi
.

Hence:

Proposition 3.5. Let S ⊂ R3 be an oriented surface, and let N : S → S2 its
Gauss map. Then dNp is an endomorphism of TpS, symmetric with respect to the
scalar product 〈· , ·〉p for all p ∈ S.

Proof. Choose a local parametrization ϕ centered at p, and let {∂1, ∂2} be
the basis of TpS induced by ϕ. It suffices (why?) to prove that dNp is symmetric
on the basis, that is, that

(34) 〈dNp(∂1), ∂2〉p = 〈∂1,dNp(∂2)〉p .
Now, by definition 〈N ◦ϕ, ∂2〉 ≡ 0. Differentiating with respect to x1 and recalling
Remark 2.24 we get

0 =
∂

∂x1
〈N ◦ ϕ, ∂2〉(O) =

〈
∂(N ◦ ϕ)

∂x1
(O),

∂ϕ

∂x2
(O)

〉
+

〈
N(p),

∂2ϕ

∂x1∂x2
(O)

〉
= 〈dNp(∂1), ∂2〉p +

〈
N(p),

∂2ϕ

∂x1∂x2
(O)

〉
.

Analogously, by differentiating 〈N ◦ ϕ, ∂1〉 ≡ 0 with respect to x2 we get

0 = 〈dNp(∂2), ∂1〉p +

〈
N(p),

∂2ϕ

∂x1∂x2
(O)

〉
,

and (34) follows from Theorem 3.4. �

We have a scalar product and a symmetric endomorphism; Linear Algebra
suggests us to mix them together.

Definition 3.20. Let S ⊂ R3 be an oriented surface, and denote byN : S → S2

its Gauss map. The second fundamental form of S is then the quadratic form
Qp : TpS → R given by

∀v ∈ TpS Qp(v) = −〈dNp(v), v〉p .
Remark 3.13. The minus sign in the previous definition will be necessary for

equation (35) to hold.

Remark 3.14. By changing the orientation of S the Gauss map changes sign,
and so the second fundamental form changes sign too.

Example 3.23. Of course, the second fundamental form of a plane is zero
everywhere.

Example 3.24. The second fundamental form of a cylinder oriented by the
Gauss map given in Example 3.18 is Qp(v) = −v2

1 − v2
2 .

Example 3.25. The second fundamental form of the sphere oriented by the
Gauss map of Example 3.17 is the opposite of the first fundamental form: Qp = −Ip.



102 3. CURVATURES

Example 3.26. Let Γh ⊂ R3 be the graph of a function h : U → R, with U ⊆ R2

open, oriented by the Gauss map of Example 3.19. Recalling the Example 3.2 we
find

Qp(v) = −〈dNp(∂1), ∂1〉pv2
1 − 2〈dNp(∂1), ∂2〉pv1v2 − 〈dNp(∂2), ∂2〉pv2

2

=
1√

1 + ‖∇h(x)‖2

[
∂2h

∂x2
1

(x)v2
1 + 2

∂2h

∂x1∂x2
(x)v1v2 +

∂2h

∂x2
2

(x)v2
2

]
for all p =

(
x, h(x)

)
∈ Γh and all v = v1∂1 + v2∂2 ∈ TpΓh. In other words, the

matrix representing the second fundamental form with respect to the basis {∂1, ∂2}
is (1 + ‖∇h‖2)−1/2Hess(h), where Hess(h) is the Hessian matrix of h.

Example 3.27. Let S ⊂ R3 be a helicoid, oriented by the Gauss map of
Example 3.20. Then, recalling Problem 2.2 and Example 3.5, we get

Qp(v) =
a

(a2 + y2
0)1/2

[
F (x0, y0)

(
v2

1 +
v2

2

a2 + y2
0

)
+ 2G(x0, y0)v1v2

]
=

2a

(a2 + y2
0)1/2

v1v2

for all p = ϕ(x0, y0) ∈ S and v = v1∂1 + v2∂2 ∈ TpS.

Example 3.28. Let S ⊂ R3 be a catenoid, oriented by the Gauss map of
Example 3.21. Then

Qp(w) = − E(x0, y0)

a cosh2 x0

w2
1 +

G(x0, y0)

a cosh2 x0

w2
2 = −aw2

1 + aw2
2

for all p = ψ(x0, y0) ∈ S and w = w1∂1 + w2∂2 ∈ TpS.

Example 3.29. Let S ⊂ R3 be a surface of revolution, oriented by the Gauss
map of Example 3.22. Then

Qp(v) =
α′β′′ − α′′β′√
(α′)2 + (β′)2

v2
1 +

αβ′√
(α′)2 + (β′)2

v2
2

for all p =
(
α(t) cos θ, α(t) sin θ, β(t)

)
∈ S and v = v1∂/∂t+ v2∂/∂θ ∈ TpS.

The second fundamental form, just like the normal curvature, allows us to
associate a number with each tangent versor to a surface; moreover, the second
fundamental form, like the normal curvature, has to do with how much a surface
curves. The second fundamental form, however, has an obvious advantage: as we
have seen in the previous examples, it is very easy to compute starting from a local
parametrization. This is important because we shall now show that the normal
curvature coincides with the second fundamental form. To prove this, take an arbi-
trary curve σ : (−ε, ε)→ S in S, parametrized by arc length, and set σ(0) = p ∈ S
and σ̇(0) = v ∈ TpS. Set N(s) = N

(
σ(s)

)
; clearly, 〈σ̇(s), N(s)〉 ≡ 0. By differenti-

ating, we find
〈σ̈(s), N(s)〉 ≡ −〈σ̇(s), Ṅ(s)〉 .

But Ṅ(0) = dNp(v); so

(35) Qp(v) = −〈dNp(v), σ̇(0)〉 = 〈σ̈(0), N(p)〉 .
Moreover, if σ is biregular we have σ̈ = κ~n, where κ is the curvature of σ, and ~n is
the normal versor of σ, and so we have

Qp(v) = κ(0)〈~n(0), N(p)〉 .
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This formulas suggest the following

Definition 3.21. Let σ : I → S be a curve parametrized by arc length con-
tained in an oriented surface S. The normal curvature κn : I → R of σ is the
function given by

κn = 〈σ̈, N ◦ σ〉 = κ〈~n,N ◦ σ〉 ,
where the second equality holds when σ is biregular. In other words, the normal
curvature of σ is the (signed) length of the projection of the acceleration vector σ̈
along the direction orthogonal to the surface. Moreover, by (35) we know that

(36) κn(s) = Qσ(s)

(
σ̇(s)

)
.

Remark 3.15. If the orientation of S is inverted, the normal curvature function
changes sign.

If σ is the normal section of S at p along v, its normal versor at p is (why?)
exactly N(p), so the normal curvature of S at p along v is the normal curvature of
σ at p. Hence we are at last able to prove that the second fundamental form gives
the normal curvature of the surface:

Proposition 3.6 (Meusnier). Let S ⊂ R3 be an oriented surface with Gauss
map N : S → S2, and p ∈ S. Then:

(i) two curves in S passing through p tangent to the same direction have the
same normal curvature at p;

(ii) the normal curvature of S at p along a vector v ∈ TpS of length 1 is given
by Qp(v).

Proof. (i) Indeed, if σ1 and σ2 are curves in S with σ1(0) = σ2(0) = p and
σ̇1(0) = σ̇2(0) = v then (36) tells us that the normal curvature at 0 of both curves
is given by Qp(v).

(ii) If σ is the normal section of S at p along v we have already remarked that
σ̈(0) = κ̃(0)N(p), where κ̃ is the oriented curvature of σ, and the assertion follows
from (35). �

3.5. Principal, Gaussian and mean curvatures

We have now proved that the normal curvatures of a surface are exactly the
values of the second fundamental form on the tangent versors. This suggests that a
more in-depth study of normal curvatures by using the properties of the differential
of the Gauss map should be possible (and useful). As we shall see, the basic fact
is that dNp is a symmetric endomorphism, and so (by the spectral theorem) it is
diagonalizable.

Definition 3.22. Let S ⊂ R3 be an oriented surface, denote by N : S → S2

its Gauss map, and take p ∈ S. A principal direction of S at p is an eigenvector
of dNp of length one, and the corresponding eigenvalue with the sign changed is a
principal curvature.

If v ∈ TpS is a principal direction with principal curvature k, we have

Qp(v) = −〈dNp(v), v〉p = −〈−kv, v〉p = k ,

and so the principal curvatures are normal curvatures. To be precise, they are the
smallest and the largest normal curvatures at the point:
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Proposition 3.7. Let S ⊂ R3 be an oriented surface and denote by N : S → S2

its Gauss map. Take p ∈ S. Then we may find principal directions v1, v2 ∈ TpS
with corresponding principal curvatures k1, k2 ∈ R, with k1 ≤ k2 and such that:

(i) {v1, v2} is an orthonormal basis of TpS;
(ii) given a versor v ∈ TpS, let θ ∈ (−π, π] be a determination of the angle

between v1 and v, so that cos θ = 〈v1, v〉p and sin θ = 〈v2, v〉p. Then

(37) Qp(v) = k1 cos2 θ + k2 sin2 θ

(Euler’s formula);
(iii) k1 is the smallest normal curvature at p, and k2 is the largest normal

curvature at p. More precisely, the set of possible normal curvatures of S
at p is the interval [k1, k2], that is,

{Qp(v) | v ∈ TpS, Ip(v) = 1} = [k1, k2] .

Proof. Since dNp is a symmetric endomorphism of TpS, the spectral theorem
(see [2, Theorem 13.5.5, p. 100], or [4, Theorem 22.2, p. 311]) provides us with an
orthonormal basis consisting of eigenvectors {v1, v2} that satisfies (i).

Given v ∈ TpS of length one, we may write v = cos θ v1 + sin θ v2, and so we
get

Qp(v) = −〈dNp(v), v〉p = 〈k1 cos θ v1 + k2 sin θ v2, cos θ v1 + sin θ v2〉p
= k1 cos2 θ + k2 sin2 θ .

Finally, if k1 = k2 then dNp is a multiple of the identity, all normal curvatures
are equal and (iii) is trivial. If, on the other hand, k1 < k2 then (37) tells us that

Qp(v) = k1 + (k2 − k1) sin2 θ .

So the normal curvature has a maximum (respectively, a minimum) for θ = ±π/2
(respectively, θ = 0, π), that is, for v = ±v2 (respectively, v = ±v1), and this
maximum (respectively, minimum) is exactly k2 (respectively, k1). Moreover, for
θ ∈ (−π, π] the normal curvature takes all possible values between k1 and k2, and
(iii) is proved. �

When you learned about linear endomorphisms you certainly saw that two
fundamental quantities for describing their behavior are the trace (given by the sum
of the eigenvalues) and the determinant (given by the product of the eigenvalues).
You will then not be surprised in learning that the trace and (even more so) the
determinant of dNp are going to play a crucial role when studying surfaces.

Definition 3.23. Let S ⊂ R3 be an oriented surface, and denote byN : S → S2

its Gauss map. The Gaussian curvature of S is the function K : S → R given by

∀p ∈ S K(p) = det(dNp) ,

while the mean curvature of S is the function H : S → R given by

∀p ∈ S H(p) = −1

2
tr(dNp) .

Remark 3.16. If k1 and k2 are the principal curvatures of S at p ∈ S, then
K(p) = k1k2 and H(p) = (k1 + k2)/2.
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ϕ(Bδ) N ◦ ϕ(Bδ)

Figure 5

Remark 3.17. If we change the orientation on S the Gauss map N changes
sign, and so both the principal curvatures and the mean curvature change sign;
the Gaussian curvature K, on the other hand, does not change. So we may define
the Gaussian curvature for non-orientable surfaces too: if p is a point of an arbi-
trary surface S, the Gaussian curvature of S at p is the Gaussian curvature at p
of the image of an arbitrary local parametrization of S centered at p (remember
Remark 3.12 too). Analogously, the absolute value of the mean curvature is well
defined on non-orientable surfaces too.

Remark 3.18. The Gaussian curvature admits an interesting interpretation in
terms of ratios of areas. Let ϕ : U → R3 be a local parametrization of a surface
S ⊂ R3 centered at p ∈ S, and denote by Bδ ⊂ R2 the open disk with center in the
origin and radius δ > 0. Then if K(p) 6= 0 we have (see Fig 5)

|K(p)| = lim
δ→0

Area
(
N ◦ ϕ(Bδ)

)
Area

(
ϕ(Bδ)

) .

To prove this, note first that K(p) = det dNp 6= 0 implies that N ◦ ϕ|Bδ is a
local parametrization of the sphere for δ > 0 small enough. Then Theorem 3.3 and
Lemma 3.1 imply

Area
(
N ◦ ϕ(Bδ)

)
=

∫
Bδ

∥∥∥∥∂(N ◦ ϕ)

∂x1
∧ ∂(N ◦ ϕ)

∂x2

∥∥∥∥ dx1 dx2

=

∫
Bδ

|K| ‖∂1 ∧ ∂2‖dx1 dx2 ,

and

Area
(
ϕ(Bδ)

)
=

∫
Bδ

‖∂1 ∧ ∂2‖dx1 dx2 .

Hence,

lim
δ→0

Area
(
N ◦ ϕ(Bδ)

)
Area

(
ϕ(Bδ)

) =
lim
δ→0

(πδ2)−1
∫
Bδ
|K| ‖∂1 ∧ ∂2‖ dx1 dx2

lim
δ→0

(πδ2)−1
∫
Bδ
‖∂1 ∧ ∂2‖dx1 dx2

=
K(p)‖∂1|p ∧ ∂2|p‖
‖∂1|p ∧ ∂2|p‖

= K(p) ,
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(a) (b)

Figure 6

using the mean value theorem for multiple integrals (see [3, Problem 6, p. 190] for
a sketch of the proof).

Remark 3.19. The sign of the Gaussian curvature may give an idea of how
a surface looks like. If p ∈ S is a point with K(p) > 0, all normal curvatures at
p have the same sign. Intuitively, this means that all normal sections of S at p
curve on the same side (why?) with respect to TpS, and so in proximity of p the
surface lies all on a single side of the tangent plane: see Fig. 6.(a). On the other
hand, if K(p) < 0, we have normal curvatures of both signs at p; this means that
the normal sections may curve on opposite sides with respect to TpS, and so in
a neighborhood of p the surface has sections on both sides of the tangent plane:
see Fig. 6.(b). Nothing can be said a priori when K(p) = 0. Problem 3.17 and
Exercises 3.53 and 3.48 will formalize these intuitive ideas.

The previous remark suggests a classification of the points of S according to
the sign of the Gaussian curvature.

Definition 3.24. Let S ⊂ R3 be an oriented surface, and denote byN : S → S2

its Gauss map. A point p ∈ S is elliptic if K(p) > 0 (and so all normal curvatures at
p have the same sign); hyperbolic if K(p) < 0 (and so there are normal curvatures at
p with opposite signs); parabolic if K(p) = 0 but dNp 6= O; and planar if dNp = O.

The rest of this section will be devoted to finding an effective procedure for
computing the various kind of curvatures (principal, Gaussian and mean) we intro-
duced. Let us begin by studying how to express the second fundamental form in
local coordinates.

Fix a local parametrization ϕ : U → S at p ∈ S of an oriented surface S ⊂ R3

with Gauss map N : S → S2. If v = v1∂1 + v2∂2 ∈ TpS, then

(38) Qp(v) = Qp(∂1)v2
1 − 2〈dNp(∂1), ∂2〉pv1v2 +Qp(∂2)v2

2 .

So it is natural to give the following

Definition 3.25. Let ϕ : U → S be a local parametrization of a surface S. The
form coefficients of S with respect to ϕ are the three functions e, f , and g : U → R
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defined by

e(x) = Qϕ(x)(∂1) = −〈dNϕ(x)(∂1), ∂1〉ϕ(x) ,

f(x) = −〈dNϕ(x)(∂1), ∂2〉ϕ(x) ,(39)

g(x) = Qϕ(x)(∂2) = −〈dNϕ(x)(∂2), ∂2〉ϕ(x)

for all x ∈ U , where N = ∂1 ∧ ∂2/‖∂1 ∧ ∂2‖, as usual.

Remark 3.20. Again, this is Gauss’ notation. We shall sometimes also use the
more modern notation e = h11, f = h12 = h21, and g = h22.

Remark 3.21. By differentiating the identities 〈N ◦ ϕ, ∂j〉 ≡ 0 for j = 1, 2, it
is straightforward to get the following expressions for form coefficients:

(40) e =

〈
N ◦ ϕ, ∂

2ϕ

∂x2
1

〉
, f =

〈
N ◦ ϕ, ∂2ϕ

∂x1∂x2

〉
, g =

〈
N ◦ ϕ, ∂

2ϕ

∂x2
2

〉
.

Remark 3.22. We have introduced e, f and g as functions defined on U .
However, it will sometimes be more convenient to consider them as functions defined
on ϕ(U), that is, to replace them with e ◦ ϕ−1, f ◦ ϕ−1 and g ◦ ϕ−1, respectively.
Finally, form coefficients also significantly depend on the local parametrization we
have chosen, as it is easy to verify (see Example 3.32).

Remark 3.23. Metric and form coefficients depend on the chosen local pa-
rametrization, whereas the Gaussian curvature and the absolute value of the mean
curvature do not, since they are defined directly from the Gauss map, without using
local parametrizations.

Clearly, the form coefficients are (why?) functions of class C∞ on U that
completely determine the second fundamental form: indeed, from (38) we get

Qp(v1∂1 + v2∂2) = e(x)v2
1 + 2f(x)v1v2 + g(x)v2

2

for all p = ϕ(x) ∈ ϕ(U) and v1∂1 + v2∂2 ∈ TpS.
Furthermore, (40) can be used to explicitly compute the form coefficients (as

we shall momentarily verify on our usual examples). So, to get an effective way for
computing principal, Gaussian and mean curvatures it will suffice to express them
in terms of metric and form coefficients. Remember that principal, Gaussian and
mean curvatures are defined from the eigenvalues of dNp; so it may be helpful to
try and write the matrix A ∈ M2,2(R) representing dNp with respect to the basis
{∂1, ∂2} using the functions E, F , G, e, f and g. Now, for all v = v1∂1 + v2∂2,
w = w1∂1 + w2∂2 ∈ TpS, we have∣∣w1 w2

∣∣ ∣∣∣∣e f
f g

∣∣∣∣ ∣∣∣∣v1

v2

∣∣∣∣ = −〈dNp(v), w〉p = −
∣∣w1 w2

∣∣ ∣∣∣∣E F
F G

∣∣∣∣A ∣∣∣∣v1

v2

∣∣∣∣ ;

from this it follows (why?) that∣∣∣∣e f
f g

∣∣∣∣ = −
∣∣∣∣E F
F G

∣∣∣∣A .

Now,

∣∣∣∣E F
F G

∣∣∣∣ is the matrix that represents a positive definite scalar product with re-

spect to a basis; in particular, it is invertible and has positive determinant EG−F 2.
So we have proved the following
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Proposition 3.8. Let ϕ : U → S be a local parametrization of a surface
S ⊂ R3, and set N = ∂1 ∧ ∂2/‖∂1 ∧ ∂2‖. Then the matrix A ∈ M2,2(R) repre-
senting the endomorphism dN with respect to the basis {∂1, ∂2} is given by

A =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = −
∣∣∣∣E F
F G

∣∣∣∣−1 ∣∣∣∣e f
f g

∣∣∣∣
= − 1

EG− F 2

∣∣∣∣eG− fF fG− gF
fE − eF gE − fF

∣∣∣∣ .(41)

In particular, the Gaussian curvature is given by

(42) K = det(A) =
eg − f2

EG− F 2
,

the mean curvature is given by

(43) H = −1

2
tr(A) =

1

2

eG− 2fF + gE

EG− F 2
,

and the principal curvatures by

(44) k1,2 = H ±
√
H2 −K .

Remark 3.24. If ϕ : U → S is a local parametrization with F ≡ f ≡ 0 the
previous formulas become simpler:

K =
eg

EG
, H =

1

2

( e
E

+
g

G

)
, k1 =

e

E
, k2 =

g

G
.

We may now compute the various curvatures for our usual examples.

Example 3.30. In the plane we have e ≡ f ≡ g ≡ 0, no matter which param-
etrization we are using, since the second fundamental form is zero everywhere. In
particular, the principal, Gaussian and mean curvatures are all zero everywhere.

Example 3.31. For the right circular cylinder with the parametrization of
Example 3.3 we have e ≡ −1 and f ≡ g ≡ 0, so K ≡ 0, H ≡ −1/2, k1 = −1, and
k2 = 0.

Example 3.32. We have seen in Example 3.25 that on the sphere oriented as in
Example 3.17 we have Qp = −Ip. This means that for any parametrization the form
coefficients have the same absolute value and opposite sign as the corresponding
metric coefficients. In particular, K ≡ 1, H ≡ −1 and k1 ≡ k2 ≡ −1.

Example 3.33. Let U ⊆ R2 be an open set, h ∈ C∞(U), and ϕ : U → R3

the local parametrization of the graph Γh given by ϕ(x) =
(
x, h(x)

)
. Recalling

Examples 3.2 and 3.19 we get

e =
1√

1 + ‖∇h‖2
∂2h

∂x2
1

, f =
1√

1 + ‖∇h‖2
∂2h

∂x1∂x2
, g =

1√
1 + ‖∇h‖2

∂2h

∂x2
2

,

hence,

K =
1

(1 + ‖∇h‖2)2
det Hess(h) ,

H =
1

2(1 + ‖∇h‖2)3/2

[
∂2h

∂x2
1

(
1 +

∣∣∣∣ ∂h∂x2

∣∣∣∣2
)

+
∂2h

∂x2
2

(
1 +

∣∣∣∣ ∂h∂x1

∣∣∣∣2
)

−2
∂2h

∂x1∂x2

∂h

∂x1

∂h

∂x2

]
.
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Example 3.34. For a helicoid parametrized as in Example 3.5, we easily find

f = a/
√
a2 + y2 and e ≡ g ≡ 0, so

K = − a2

(a2 + y2)2
, H ≡ 0 , k1,2 = ± a

a2 + y2
.

Example 3.35. For a catenoid parametrized as in Example 3.6, we find e ≡ −a,
f ≡ 0 and g ≡ a, so

K = − 1

a2 cosh4 x
, H ≡ 0 , k1,2 = ± 1

a cosh2 x
.

Example 3.36. Let S be a surface of revolution, parametrized as in Exam-
ple 3.7. The form coefficients are then given by

e =
α′β′′ − β′α′′√
(α′)2 + (β′)2

, f ≡ 0, g =
αβ′√

(α′)2 + (β′)2
.

Recalling Remark 3.24, we get

K =
β′(α′β′′ − β′α′′)
α
(
(α′)2 + (β′)2

)2 , H =
α(α′β′′ − β′α′′) + β′

(
(α′)2 + (β′)2

)
2α
(
(α′)2 + (β′)2

)3/2 ,

k1 =
α′β′′ − β′α′′(

(α′)2 + (β′)2
)3/2 , k2 =

β′

α
(
(α′)2 + (β′)2

)1/2 .
If the generatrix of S is parametrized by arc length, these formulas become quite
simpler: by differentiating α̇2 + β̇2 ≡ 1 we get α̇α̈+ β̇β̈ ≡ 0, and so

K = − α̈
α
, H =

β̇ + α(α̇β̈ − β̇α̈)

2α
, k1 = α̇β̈ − β̇α̈ , k2 =

β̇

α
.

Example 3.37. Let σ : (π/2, π) → R3 be the upper half of the tractrix given
by

σ(t) =

(
sin t, 0, cos t+ log tan

t

2

)
;

see Problem 1.3. The surface of revolution S obtained by rotating the tractrix
around the z-axis is called pseudosphere; see Fig. 7 (and Exercise 2.18). By using
the previous example, it is easy to find (see also Problem 3.8) that the pseudosphere
has constant Gaussian curvature equal to −1.

Remark 3.25. The plane is an example of surface with constant Gaussian
curvature equal to zero, and spheres are examples of surfaces with positive constant
Gaussian curvature (Exercise 3.27). Other examples of surfaces with zero constant
Gaussian curvature are cylinders (Exercise 3.26). The pseudosphere, on the other
hand, is an example of a surface with negative constant Gaussian curvature but,
unlike planes, cylinders, and spheres, it is not a closed surface in R3. This is
not a coincidence: it is possible to prove that closed surfaces in R3 with negative
constant Gaussian curvature do not exist (Hilbert’s Theorem). Moreover, it is also
possible to prove that spheres are the only closed surfaces with positive constant
Gaussian curvature, and that planes and cylinder are the only closed surfaces with
zero constant Gaussian curvature.
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Figure 7. The pseudosphere

3.6. Gauss’ Theorema egregium

The goal of this section is to prove that the Gaussian curvature is an intrinsic
property of a surface: it only depends on the first fundamental form, and not
on the way the surface is immersed in R3. As you can imagine, it is an highly
unexpected result; the definition of K directly involves the Gauss map, which is very
strongly related to the embedding of the surface in R3. Nevertheless, the Gaussian
curvature can be measured staying within the surface, forgetting the ambient space.
In particular, two isometric surfaces have the same Gaussian curvature; and this
will give us a necessary condition a surface has to satisfy for the existence of a
similitude with an open subset of the plane.

The road to get to this result is almost as important as the result itself. The
idea is to proceed as we did to get Frenet-Serret formulas for curves. The Frenet
frame allows us to associate with each point of the curve a basis of R3; hence it is
possible to express the derivatives of the Frenet frame as a linear combination of the
frame itself, and the coefficients turn out to be fundamental geometric quantities
for studying the curve.

Let us see how to adapt such an argument to surfaces. Let ϕ : U → S be a local
parametrization of a surface S ⊂ R3, and let N : ϕ(U) → S2 be the Gauss map
of ϕ(U) given by N = ∂1 ∧ ∂2/‖∂1 ∧ ∂2‖, as usual. The triple {∂1, ∂2, N} is a basis
of R3 everywhere, and so we may express any vector of R3 as a linear combination
of these vectors. In particular, there must exist functions Γhij , hij , aij ∈ C∞(U)
such that

∂2ϕ

∂xi∂xj
= Γ1

ij∂1 + Γ2
ij∂2 + hijN ,(45)

∂(N ◦ ϕ)

∂xj
= a1j∂1 + a2j∂2 ,(46)

for i, j = 1, 2, where in last formula there are no terms proportional to N because
‖N‖ ≡ 1 implies that all partial derivatives of N ◦ ϕ are orthogonal to N . Note
further that, by Theorem 3.4, the terms Γrij and hij are symmetric with respect to
their lower indices, that is, Γrji = Γrij and hji = hij for all i, j, r = 1, 2.
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We already know some of the functions appearing in (46). For instance, since
∂(N ◦ ϕ)/∂xi = dNp(∂i), the terms aij are just the components of the matrix
A that represents dNp with respect to the basis {∂1, ∂2}, and so they are given
by (41). The terms hij are known too: by (40) we know that they are exactly the
form coefficients (thus the notation is consistent with Remark 3.20). So the only
quantities that are still unknown are the coefficients Γrij .

Definition 3.26. The functions Γrij are the Christoffel symbols of the local
parametrization ϕ.

We proceed now to compute Christoffel symbols. Taking the scalar product of
(45) with ∂1 and ∂2 (i = j = 1) yields
(47)

EΓ1
11 + FΓ2

11 =

〈
∂2ϕ

∂x2
1

, ∂1

〉
=

1

2

∂

∂x1
〈∂1, ∂1〉 =

1

2

∂E

∂x1
,

FΓ1
11 +GΓ2

11 =

〈
∂2ϕ

∂x2
1

, ∂2

〉
=

∂

∂x1
〈∂1, ∂2〉 −

〈
∂1,

∂2ϕ

∂x1∂x2

〉
=
∂F

∂x1
− 1

2

∂E

∂x2
.

Analogously, we find

(48)


EΓ1

12 + FΓ2
12 =

1

2

∂E

∂x2
,

FΓ1
12 +GΓ2

12 =
1

2

∂G

∂x1
,

and

(49)


EΓ1

22 + FΓ2
22 =

∂F

∂x2
− 1

2

∂G

∂x1
,

FΓ1
22 +GΓ2

22 =
1

2

∂G

∂x2
.

These are three square linear systems whose matrix of coefficients has determinant
EG − F 2, which is always positive; so they have a unique solution, and it can be
expressed in terms of metric coefficients and of their derivatives (see Exercise 3.57).

Remark 3.26. Note that, in particular, the Christoffel symbols only depend
on the first fundamental form of S, and so they are intrinsic. As a consequence,
any quantity that can be written in terms of Christoffel symbols is intrinsic: it only
depends on the metric structure of the surface, and not on the way the surface is
immersed in R3.

Remark 3.27. We explicitly remark, since it will be useful later on, that if the
local parametrization is orthogonal (that is, if F ≡ 0) the Christoffel symbols have
a particularly simple expression:

(50)


Γ1

11 =
1

2E

∂E

∂x1
, Γ1

12 = Γ1
21 =

1

2E

∂E

∂x2
, Γ1

22 = − 1

2E

∂G

∂x1
,

Γ2
11 = − 1

2G

∂E

∂x2
, Γ2

12 = Γ2
21 =

1

2G

∂G

∂x1
, Γ2

22 =
1

2G

∂G

∂x2
.

Let us see now the value of the Christoffel symbols in our canonical examples.

Example 3.38. By Example 3.1, we know that the Christoffel symbols of the
plane are zero everywhere.
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Example 3.39. The Christoffel symbols of the right circular cylinder param-
etrized as in Example 3.3 are identically zero too.

Example 3.40. The Christoffel symbols of the local parametrization of the

sphere ϕ(x, y) = (x, y,
√

1− x2 − y2) are

Γ1
11 =

x

1− x2 − y2
, Γ1

12 = Γ1
21 =

x2y

1− x2 − y2
,

Γ1
22 =

x(1− x2)

1− x2 − y2
, Γ2

11 =
y(1− y2)

1− x2 − y2
,

Γ2
12 = Γ2

21 =
xy2

1− x2 − y2
, Γ2

22 =
y(1− x2)

1− x2 − y2
.

On the other hand, the Christoffel symbols of the other local parametrization of
the sphere ψ(θ, ψ) = (sin θ cosφ, sin θ sinφ, cos θ) given in Example 3.4 areΓ1

11 ≡ 0 , Γ1
12 = Γ1

21 ≡ 0 , Γ1
22 = − sin θ cos θ ,

Γ2
11 ≡ 0 , Γ2

12 = Γ2
21 =

cos θ

sin θ
, Γ2

22 ≡ 0 .

Example 3.41. Let U ⊆ R2 be an open set, h ∈ C∞(U), and ϕ : U → R3

the local parametrization of the graph Γh given by ϕ(x) =
(
x, h(x)

)
. Recalling

Example 3.2 we get

Γ1
11 =

(∂h/∂x1)(∂2h/∂x2
1)

1 + ‖∇h‖2 , Γ1
12 = Γ1

21 =
(∂h/∂x1)(∂2h/∂x1∂x2)

1 + ‖∇h‖2 ,

Γ1
22 =

(∂h/∂x1)(∂2h/∂x2
2)

1 + ‖∇h‖2 , Γ2
11 =

(∂h/∂x2)(∂2h/∂x2
1)

1 + ‖∇h‖2 ,

Γ2
12 = Γ2

21 =
(∂h/∂x2)(∂2h/∂x1∂x2)

1 + ‖∇h‖2 , Γ2
22 =

(∂h/∂x2)(∂2h/∂x2
2)

1 + ‖∇h‖2 .

Example 3.42. The Christoffel symbols of the helicoid parametrized as in
Example 3.5 areΓ1

11 ≡ 0 , Γ1
12 = Γ1

21 =
y

a2 + y2
, Γ1

22 ≡ 0 ,

Γ2
11 = −y , Γ2

12 = Γ2
21 ≡ 0 , Γ2

22 ≡ 0 .

Example 3.43. The Christoffel symbols of the catenoid parametrized as in
Example 3.6 are

Γ1
11 =

sinhx

coshx
, Γ1

12 = Γ1
21 ≡ 0 , Γ1

22 = − sinhx

coshx
,

Γ2
11 ≡ 0 , Γ2

12 = Γ2
21 =

sinhx

coshx
, Γ2

22 ≡ 0 .

Example 3.44. We conclude with the Christoffel symbols of a surface of rev-
olution parametrized as in Example 3.7:

(51)


Γ1

11 =
α′α′′ + β′β′′

(α′)2 + (β′)2
, Γ1

12 = Γ1
21 ≡ 0 , Γ1

22 = − αα′

(α′)2 + (β′)2
,

Γ2
11 ≡ 0 , Γ2

12 = Γ2
21 =

α′

α
, Γ2

22 ≡ 0 .
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Now, unlike what happened for curvature and torsion, the Christoffel symbols
cannot be chosen arbitrarily; they must satisfy some compatibility conditions. To
find them, let us compute the third derivatives of the parametrization.

As for the second derivatives, there exist functions Arijk, Bijk ∈ C∞(U) such
that

∂3ϕ

∂xi∂xj∂xk
= A1

ijk∂1 +A2
ijk∂2 +BijkN .

Again by Theorem 3.4 we are sure that the functions Arijk and Bijk are symmetric
in the lower indices. In particular,

(52) Arijk = Arjik = Arikj and Bijk = Bjik = Bikj

for all i, j, k, r = 1, 2.
To compute the expression of Arijk and Bijk, we differentiate (45) and then

insert (45) and (46) in what we find. We get

Arijk =
∂Γrjk
∂xi

+ Γ1
jkΓri1 + Γ2

jkΓri2 + hjkari , Bijk = Γ1
jkhi1 + Γ2

jkhi2 +
∂hjk
∂xi

.

Recalling that Arijk−Arjik = 0, we find, for all i, j, k, r = 1, 2 the fundamental
Gauss’ equations:

(53)
∂Γrjk
∂xi

− ∂Γrik
∂xj

+

2∑
s=1

(
ΓsjkΓris − ΓsikΓrjs

)
= −(hjkari − hikarj) .

Before examining what can be deduced from the symmetry of Bijk, note an
important consequence of Gauss’ equations. If we write (53) for i = r = 1 and
j = k = 2 (see Exercise 3.58 for the other cases), we get

∂Γ1
22

∂x1
− ∂Γ1

12

∂x2
+

2∑
s=1

(
Γs22Γ1

1s − Γs12Γ1
2s

)
= −(h22a11 − h12a12)

=
(eg − f2)G

EG− F 2
= GK .

Since, as already remarked, the Christoffel symbols only depend on the first funda-
mental form, we have proved the very famous Gauss’ Theorema Egregium:

Theorem 3.5 (Gauss’ Theorema Egregium). The Gaussian curvature K of a
surface is given by the formula

(54) K =
1

G

[
∂Γ1

22

∂x1
− ∂Γ1

12

∂x2
+

2∑
s=1

(
Γs22Γ1

1s − Γs12Γ1
2s

)]
.

In particular, the Gaussian curvature of a surface is an intrinsic property, that is,
it only depends on the first fundamental form.

As a consequence, two locally isometric surfaces must have the same Gaussian
curvature:

Corollary 3.2. Let F : S → S̃ be a local isometry between two surfaces. Then
K̃◦F = K, where K is the Gaussian curvature of S and K̃ is the Gaussian curvature
of S̃. More generally, if F is a similitude with scale factor r > 0 then K̃◦F = r−2K.

Proof. It immediately follows from Theorem 3.5, Proposition 3.1, the defini-
tion of similitude, and Exercise 3.11. �
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Remark 3.28. Warning: there exist maps F : S → S̃ that satisfy K̃ ◦ F = K
but are not local isometries; see Exercise 3.41.

As a consequence of Corollary 3.2, if a surface S is locally isometric to (or, more
in general, has a similitude with) a portion of a plane, then the Gaussian curvature
of S is zero everywhere. Hence, there is no local isometry between a portion of a
sphere and a portion of a plane, because the sphere has Gaussian curvature positive
everywhere while the plane has zero Gaussian curvature: anguished cartographers
have to accept that it is not possible to draw a geographical map that preserves
distances, not even scaled by some factor.

One last consequence of Theorem 3.5 is another explicit formula for computing
the Gaussian curvature:

Lemma 3.3. Let ϕ : U → S be an orthogonal local parametrization of a surface
S. Then

K = − 1

2
√
EG

{
∂

∂x2

(
1√
EG

∂E

∂x2

)
+

∂

∂x1

(
1√
EG

∂G

∂x1

)}
.

Proof. If we substitute (50) in (54), we get

K =
1

G

[
− ∂

∂x1

(
1

2E

∂G

∂x1

)
− ∂

∂x2

(
1

2E

∂E

∂x2

)
− 1

4E2

∂G

∂x1

∂E

∂x1

+
1

4EG

∂G

∂x2

∂E

∂x2
− 1

4E2

(
∂E

∂x2

)2

+
1

4EG

(
∂G

∂x1

)2
]

=
1

4E2G2

(
E
∂G

∂x2
+G

∂E

∂x2

)
∂E

∂x2
− 1

2EG

∂2E

∂x2
2

+
1

4E2G2

(
G
∂E

∂x1
+ E

∂G

∂x1

)
∂G

∂x1
− 1

2EG

∂2G

∂x2
1

= − 1

2
√
EG

{
∂

∂x2

(
1√
EG

∂E

∂x2

)
+

∂

∂x1

(
1√
EG

∂G

∂x1

)}
.

�

We close this chapter by completing the discussion of (52). The condition
Bijk −Bjik = 0 yields, for all i, j, k = 1, 2 the Codazzi-Mainardi equations:

(55)

2∑
s=1

(
Γsjkhis − Γsikhjs

)
=
∂hik
∂xj

− ∂hjk
∂xi

.

Though less important than Gauss’ equations, the Codazzi-Mainardi equations can
be nonetheless very useful when studying surfaces.

Summing up, if ϕ is a local parametrization of a regular surface the coordinates
of ϕ have to satisfy the systems of partial differential equations (45)–(46), whose
coefficients depend on the metric and form coefficients E, F , G, e, f and g, which
in turn satisfy the compatibility conditions (53) and (55). Conversely, it is possible
to prove the fundamental theorem of the local theory of surfaces (also known as
Bonnet’s theorem), which basically says that functions E, F , G, e, f and g with
E, G, EG − F 2 > 0 and satisfying (53) and (55) are locally the metric and form
coefficients of a regular surface, unique up to a rigid motion of R3.

We conclude with two definitions which will be useful in the exercises of this
chapter.
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Definition 3.27. Let S ⊂ R3 be an oriented surface, and denote byN : S → S2

its Gauss map. A line of curvature of the surface S is a curve σ in S such that σ̇
is always a principal direction.

Definition 3.28. Let S ⊂ R3 be an oriented surface, and denote byN : S → S2

its Gauss map. An asymptotic direction at p ∈ S is a versor v ∈ TpS such that
Qp(v) = 0. An asymptotic curve of the surface S is a curve σ in S such that σ̇ is
always an asymptotic direction.

Remark 3.29. Since by exchanging orientations the second fundamental form
just changes sign, and since each surface is locally orientable, the notions of principal
direction, asymptotic direction, line of curvature, and asymptotic curve are well
defined for every surface, not just orientable ones.
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Guided problems

Notation. From this section onwards, we shall use the following convention for
writing partial derivatives: if ϕ : U → R is a function of class Ck (with k ≥ 2)
defined in an open set U ⊂ R2 with coordinates (u, v), we shall denote the partial
derivatives of ϕ by

ϕu =
∂ϕ

∂u
, ϕv =

∂ϕ

∂v
, for first order derivatives;

ϕuu =
∂2ϕ

∂u2
, ϕuv =

∂2ϕ

∂u∂v
, ϕvv =

∂2ϕ

∂v2
, for second order derivatives.

An analogous notation will sometimes be used for partial derivatives of functions
of more than 2 variables, or for higher-order derivatives.

Definition 3.P.1. If ϕ : U → S is a local parametrization of a surface S, and
we denote by (u, v) the coordinates in U , then a u-curve (respectively, a v-curve)
is a coordinate curve of the form u 7→ ϕ(u, v0) (respectively, v 7→ ϕ(u0, v)).

Problem 3.1. Let S ⊂ R3 be the surface of equation z = xy2.

(i) Determine the first fundamental form of S and its metric coefficients.
(ii) Determine the second fundamental form Q of S.
(iii) Prove that K ≤ 0 everywhere, and that K = 0 only for the points of S

with y = 0.
(iv) Prove that (0, 0, 0) is a planar point of S.
(v) Determine the principal directions in the points of S with zero Gaussian

curvature.
(vi) Prove that the curves σ1, σ2 : R→ S given by

σ1(t) = (x0 + t, y0, z0 + t y2
0) and σ2(t) = (etx0, e

−2t y0, e
−3t z0)

are asymptotic curves passing through (x0, y0, z0) ∈ S for all x0, y0 ∈ R.

Solution. (i) Let ϕ : R2 → S be the parametrization ϕ(u, v) = (u, v, uv2) of S
seen as a graph. Then

∂1 = ϕu = (1, 0, v2) , ∂2 = ϕv = (0, 1, 2uv) ,

and so the metric coefficients are given by

E = 〈∂1, ∂1〉 = 1 + v4 , F = 〈∂1, ∂2〉 = 2uv3 , G = 〈∂2, ∂2〉 = 1 + 4u2v2 .

In particular, EG− F 2 = 1 + v4 + 4u2v2; moreover, the first fundamental form is

Iϕ(u,v)(v1∂1 + v2∂2) = Ev2
1 + 2Fv1v2 +Gv2

2

= (1 + v4)v2
1 + 4uv3v1v2 + (1 + 4u2v2)v2

2 .

(ii) To determine the form coefficients e, f and g, we shall use (40). First of
all, note thatϕu ∧ ϕv = (−v2,−2uv, 1) ,

N =
ϕu ∧ ϕv
‖ϕu ∧ ϕv‖

=
1√

1 + v4 + 4u2v2
(−v2,−2uv, 1) ;

moreover, the second-order partial derivatives are

ϕuu = (0, 0, 0) , ϕuv = (0, 0, 2v) , ϕvv = (0, 0, 2u) .
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Then,

e = 〈N,ϕuu〉 = 0 ,

f = 〈N,ϕuv〉 =
2v√

1 + v4 + 4u2v2
,

g = 〈N,ϕvv〉 =
2u√

1 + v4 + 4u2v2
.

In particular, eg − f2 = −4v2/(1 + v4 + 4u2v2), and the second fundamental form
is given by

Qϕ(u,v)(v1∂1 + v2∂2) = e v2
1 + 2f v1v2 + g v2

2

=
4v√

1 + v4 + 4u2v2
v1v2 +

2u√
1 + v4 + 4u2v2

v2
2 .

(iii) The previous computations yield

K =
eg − f2

EG− F 2
=

−4v2

(1 + v4 + 4u2v2)2
.

So K is always nonpositive, and is zero if and only if v = 0, which is equivalent to
y = 0.

(iv) Since (0, 0, 0) = ϕ(0, 0), and e = f = g = 0 in the origin, it follows that
(0, 0, 0) is a planar point.

(v) Recall that the matrix A representing the differential of the Gauss map
with respect to the basis {ϕu, ϕv} is given by

A =
−1

EG− F 2

∣∣∣∣ G −F
−F E

∣∣∣∣ ∣∣∣∣e f
f g

∣∣∣∣ .
So in this case we have

A =
−2

(1 + v4 + 4u2v2)3/2

∣∣∣∣−2uv4 v + 2u2v3

v + v5 u− uv4

∣∣∣∣ .
In particular, when v = y = 0 we get

A =

∣∣∣∣0 0
0 −2u

∣∣∣∣ ,
and so the principal directions coincide with the coordinate directions.

(vi) First of all,

σ1(t) = ϕ(x0 + t, y0) and σ2(t) = ϕ(etx0, e
−2ty0) ,

so they actually are curves in S. Differentiating, we get

σ′1(t) = (1, 0, y2
0) = ϕu(x0 + t, y0) ,

σ′2(t) = (etx0,−2e−2ty0,−3e−3tz0)

= etx0ϕu(etx0, e
−2ty0)− 2e−2ty0ϕv(e

tx0, e
−2ty0) .

Recalling the expression we found for the second fundamental form, we obtain
Q
(
σ′1(t)

)
≡ 0 and Q

(
σ′2(t)

)
≡ 0, and so σ1 and σ2 are asymptotic curves. �

Problem 3.2. Let S ⊂ R3 be the regular surface with global parametrization
ϕ : R2 → R3 given by ϕ(u, v) = (u, v, u2 − v2).

(i) Determine the metric coefficients of S with respect to ϕ.
(ii) Determine a Gauss map for S.
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(iii) Compute the second fundamental form and the Gaussian curvature of S.
(iv) Let σ : I → S be a curve with σ(0) = O ∈ S. Prove that the normal

curvature of σ at the origin belongs to the interval [−2, 2].

Solution. (i) Differentiating we find

∂1 = ϕu = (1, 0, 2u) , ∂2 = ϕv = (0, 1,−2v) ;

so the metric coefficients of ϕ are given by

E = 1 + 4u2 , F = −4uv , G = 1 + 4v2 .

(ii) It is enough to consider

N =
ϕu ∧ ϕv
‖ϕu ∧ ϕv‖

=
1√

4u2 + 4v2 + 1
(−2u, 2v, 1) .

(iii) The second-order partial derivatives of ϕ are

ϕuu = (0, 0, 2) , ϕuv = (0, 0, 0) and ϕvv = (0, 0,−2) ;

so the form coefficients of ϕ are

e =
2√

4u2 + 4v2 + 1
, f ≡ 0 , g =

−2√
4u2 + 4v2 + 1

,

and the second fundamental form is given by

Qϕ(u,v)(v1∂1 + v2∂2) = e v2
1 + 2f v1v2 + g v2

2 =
2(v2

1 − v2
2)√

4u2 + 4v2 + 1
.

Moreover,

K =
eg − f2

EG− F 2
=

−4

(4u2 + 4v2 + 1)2

is always negative, and so all the points of S are hyperbolic.

(iv) We know that the normal curvature of σ is given by the second fundamental
form computed in the tangent versor of σ, and that the second fundamental form
of S at the origin O = ϕ(0, 0) is given by QO(v1∂1 + v2∂2) = 2(v2

1 − v2
2). Moreover,

if σ̇(0) = v1∂1 + v2∂2 then

1 = ‖σ̇(0)‖2 = E(0, 0)v2
1 + 2F (0, 0)v1v2 +G(0, 0)v2

2 = v2
1 + v2

2 .

In particular, we may write v1 = cos θ and v2 = sin θ for a suitable θ ∈ R; hence,

κn(0) = QO
(
σ̇(0)

)
= 2(cos2 θ − sin2 θ) = 2 cos(2θ) ∈ [−2, 2] ,

as claimed. �

Definition 3.P.2. A point p of a surface S is called umbilical if dNp is a
multiple of the identity map on TpS. In other words, p is umbilical if the two
principal curvatures in p coincide.

Problem 3.3. Prove that an oriented surface S consisting entirely of umbilical
points is necessarily contained in a sphere or in a plane (and these are surfaces
consisting only of umbilical points; see Examples 3.16 and 3.17).

Solution. By assumption, there exists a function λ : S → R such that we
have dNp(v) = λ(p)v for all v ∈ TpS and p ∈ S, where N : S → S2 is the Gauss
map of S. In particular, if ϕ is a local parametrization we have

∂(N ◦ ϕ)

∂x1
= dN(∂1) = (λ ◦ ϕ)∂1 , and

∂(N ◦ ϕ)

∂x2
= dN(∂2) = (λ ◦ ϕ)∂2 .
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Differentiating again we get

∂2(N ◦ ϕ)

∂x2∂x1
=

∂(λ ◦ ϕ)

∂x2
∂1 + (λ ◦ ϕ)

∂2ϕ

∂x2∂x1
,

∂2(N ◦ ϕ)

∂x1∂x2
=

∂(λ ◦ ϕ)

∂x1
∂2 + (λ ◦ ϕ)

∂2ϕ

∂x1∂x2
,

and so
∂(λ ◦ ϕ)

∂x2
∂1 −

∂(λ ◦ ϕ)

∂x1
∂2 ≡ O .

But ∂1 and ∂2 are linearly independent; therefore this implies

∂(λ ◦ ϕ)

∂x2
≡ ∂(λ ◦ ϕ)

∂x1
≡ 0 ,

that is λ ◦ ϕ is constant.
So we have proved that λ is locally constant: being S is connected, λ is constant

on all S. Indeed, choose p0 ∈ S and put R = {p ∈ S | λ(p) = λ(p0)}. This set
is not empty (p0 ∈ R), it is closed since λ is continuous, and is open because λ is
locally constant; so by the connectedness of S we have R = S, that is, λ is globally
constant.

If λ ≡ 0, the differential of the Gauss map is zero everywhere, that is, N is
everywhere equal to a vector N0 ∈ S2. Choose p0 ∈ S, and define h : S → R by
setting h(q) = 〈q− p0, N0〉. If ϕ : U → S is an arbitrary local parametrization of S,
we have

∂(h ◦ ϕ)

∂xj
= 〈∂j , N0〉 ≡ 0

for j = 1, 2. It follows that h is locally constant, and so it is constant by the same
argument as above. Since h(p0) = 0, we get h ≡ 0, which means exactly that S is
contained in the plane through p0 and orthogonal to N0.

If instead λ ≡ λ0 6= 0, let q : S → R3 be given by q(p) = p− λ−1
0 N(p). Then

dqp = id− 1

λ0
dNp = id− 1

λ0
λ0 id ≡ O ,

therefore q is (locally constant and thus) constant; denote by q0 the value of q, that
is, q ≡ q0. Hence p− q0 ≡ λ−1

0 N(p), and so

∀p ∈ S ‖p− q0‖2 =
1

λ2
0

.

In other words, S is contained in the sphere of center q0 and radius 1/|λ0|, and we
are done. �

Problem 3.4. When are the coordinate lines lines of curvature? Let
ϕ : U → S ⊂ R3 be a local parametrization of a regular surface S, and assume
that no point of ϕ(U) is umbilical. Prove that all the coordinate curves are lines of
curvature if and only if F ≡ f ≡ 0.

Solution. Saying that the coordinate curves are always lines of curvature is
equivalent to saying that the coordinate directions are always principal directions,
and this in turn is equivalent to saying that the matrix A representing the differ-
ential of the Gauss map in the basis {ϕu, ϕv} is always diagonal.
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Now, recalling (41), we immediately see that if F ≡ f ≡ 0 then A is diagonal;
so, in this case, the coordinate curves are always curvature lines (even when there
are umbilical points).

Conversely, assume that the coordinate lines are lines of curvature. This means
that the vectors ϕu and ϕv are principal directions; in particular, since no point is
umbilical, ϕu and ϕv are orthogonal, and so F ≡ 0. Now, the off-diagonal entries
of A are −f/G and −f/E; since they have to be zero, we get f ≡ 0, as claimed.
Notice that in umbilical points all directions are principal, and so coordinate curves
are always lines of curvature at umbilical points. �

Problem 3.5. Let S be an oriented surface, and N : S → S2 its Gauss map.
Prove that a curve σ : I → S is a line of curvature if and only if, having set
N(t) = N

(
σ(t)

)
, we have N ′(t) = λ(t)σ′(t) for a suitable function λ : I → R of

class C∞. In this case, −λ(t) is the (principal) curvature of S along σ′(t).

Solution. It suffices to remark that

dNσ(t)

(
σ′(t)

)
=

d(N ◦ σ)

dt
(t) = N ′(t) ,

so σ′(t) is an eigenvector of dNσ(t) if and only if N ′(t) = λ(t)σ′(t) for some λ(t) ∈ R.
�

Problem 3.6. Characterization of the lines of curvature. Let S ⊂ R3 be
an oriented surface, ϕ : U → S a local parametrization, and let σ : I → ϕ(U) be a
regular curve with support contained in ϕ(U), so we can write σ(t) = ϕ

(
u(t), v(t)

)
.

Prove that σ is a line of curvature if and only if

(fE − eF )(u′)2 + (gE − eG)u′v′ + (gF − fG)(v′)2 ≡ 0 .

Solution. By definition, we know that σ is a line of curvature if and only if
dNσ(t)

(
σ′(t)

)
= λ(t)σ′(t) for a suitable function λ of class C∞. Now it suffices to

use Proposition 3.8 for expressing dNσ(t)

(
σ′(t)

)
, and eliminate λ from the system

of equations given by dNσ(t)

(
σ′(t)

)
= λ(t)σ′(t), recalling that σ′(t) 6= O always

because σ is regular. �

Problem 3.7. Characterization of asymptotic curves. Let ϕ : U → S be
a local parametrization of an oriented surface, and let σ : I → ϕ(U) be a regular
curve with support contained in ϕ(U), so we can write σ(t) = ϕ

(
u(t), v(t)

)
. Prove

that σ is an asymptotic curve if and only if

e(u′)2 + 2fu′v′ + g(v′)2 ≡ 0 .

In particular, deduce that the coordinate curves are asymptotic curves (necessarily
in a neighborhood of a hyperbolic point) if and only if e = g = 0.

Solution. By definition, a curve σ is an asymptotic curve if and only if
Qσ(t)

(
σ′(t)

)
≡ 0, where Qp is the second fundamental form at p ∈ S. Since

σ′(t) = u′ ϕu + v′ ϕv, where ϕu = ∂1 and ϕv = ∂2 are computed in σ(t), the
assertions immediately follows recalling that the form coefficients e, f , g represent
the second fundamental form in the basis {∂1, ∂2}. �

Problem 3.8. Let S ⊂ R3 the (upper half of the) pseudosphere obtained by
rotating around the z-axis the (upper half of the) tractrix σ : (π/2, π) → R3 given
by

σ(t) =
(

sin t, 0, cos t+ log tan(t/2)
)

;
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see Exercise 2.18 and Example 3.37. In particular, S is the support of the immersed
surface ϕ : (π/2, π)× R→ R3 given by

ϕ(t, θ) =

(
sin t cos θ, sin t sin θ, cos t+ log tan

t

2

)
.

(i) Determine the Gauss map N : S → S2 induced by ϕ.
(ii) Determine the differential dN of the Gauss map and the Gaussian curva-

ture of S.
(iii) Determine the mean curvature of S.

Solution. (i) To determine the Gauss map of S we compute, as usual, the
partial derivatives of the parametrization:

∂1 = ϕt = cos t(cos θ, sin θ, cotan t) , ∂2 = ϕθ = sin t(− sin θ, cos θ, 0) .

Hence, ϕt ∧ϕθ = cos t(− cos t cos θ,− cos t sin θ, sin t) and ‖ϕt ∧ϕθ‖ = cos t, and so

N
(
ϕ(t, θ)

)
= (− cos t cos θ,− cos t sin θ, sin t) .

(ii) To determine the differential dNp at p = ϕ(t, θ) ∈ S, we use the fact that
dNp(ϕt) = ∂(N ◦ ϕ)/∂t and dNp(ϕθ) = ∂(N ◦ ϕ)/∂θ. We find that

dNp(ϕt) = sin t (cos θ, sin θ, cotan t) = (tan t)ϕt , dNp(ϕθ) = −(cotan t)ϕθ .

So the matrix representing dNp with respect to the basis {ϕt, ϕθ} is

A =

∣∣∣∣tan t 0
0 −cotan t

∣∣∣∣ ;

in particular, K = det(A) ≡ −1, as claimed in Example 3.37. Incidentally, S
is called “pseudosphere” exactly because it has constant — even if negative —
Gaussian curvature, like the usual sphere.

(iii) It suffices to notice that the mean curvature is given by

H = −1

2
tr(A) = −1

2
(tan t+ cotant) = − 1

sin 2t
.

�

Problem 3.9. Compute the Gaussian curvature and the mean curvature of the
ellipsoid S = {(x, y, z) ∈ R3 | x2 + 4y2 + 9z2 = 1} without using local parametriza-
tions.

Solution. Since S is the vanishing locus of the function h : R3 → R given by
h(x, y, z) = x2 + 4y2 + 9z2− 1, Corollary 3.1 tells us that a Gauss map N : S → S2

of S is

N(x, y, z) = α(x, y, z)(x, 4y, 9z) ,

where α : S → R is the function α(x, y, z) = (x2 + 16y2 + 81z2)−1/2. Moreover, the
tangent plane at p = (x0, y0, z0) is given by

TpS = {(v1, v2, v3) ∈ R3 | x0v1 + 4y0v2 + 9z0v3 = 0} .
The Jacobian matrix of N seen as a map from R3 \ {O} to R3 is

J =

∣∣∣∣∣∣
α+ xαx xαy xαz

4yαx 4α+ 4yαy 4yαz
9zαx 9zαy 9α+ 9zαz

∣∣∣∣∣∣ ;
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so

dNp(v1, v2, v3) = J

∣∣∣∣∣∣
v1

v2

v3

∣∣∣∣∣∣ = α(p)

∣∣∣∣∣∣
v1

4v2

9v3

∣∣∣∣∣∣− α3(x0v1 + 16y0v2 + 81z0v3)

∣∣∣∣∣∣
x0

4y0

9z0

∣∣∣∣∣∣ .
Suppose that x0 6= 0. A basis B = {w1, w2} of the tangent vectors to S at p is then
given by

w1 = (−9z0, 0, x0) and w2 = (−4y0, x0, 0) .

Computing explicitly dNp(w1) and dNp(w2), and writing them as linear combina-
tions with respect to the basis B, we get that the matrix representing dNp with
respect to B is

A = α

∣∣∣∣9(1− 72α2z2
0) −108α2y0z0

−288α2y0z0 4(1− 12α2y2
0)

∣∣∣∣ .
So, if x0 6= 0 the Gaussian curvature and the mean curvature are

K =
36

(x2
0 + 16y2

0 + 81z2
0)2

, H =
36(x2

0 + y2
0 + z2

0 − 1)− 13

2(x2
0 + 16y2

0 + 81z2
0)3/2

;

note that K is always positive.
We have now found Gaussian and mean curvatures in all points p = (x, y, z) ∈ S

with x 6= 0. But S ∩ {x = 0} is an ellipse C, and S \ C is an open set dense in
S. Since the Gaussian and mean curvatures are continuous, and the expressions we
have found are defined and continuous on all S, they give the values of K and H
on all S. �

Problem 3.10. Let S ⊂ R3 be a regular surface with a global parametriza-
tion ϕ : R × R+ → S whose metric coefficients satisfy E(u, v) = G(u, v) = v
e F (u, v) ≡ 0. Prove that S is not locally isometric to a sphere.

Solution. Since the parametrization is orthogonal, we may use (50) to com-
pute the Christoffel symbols of ϕ. We obtain Γ1

11 = 0, Γ2
11 = − 1

2v , Γ1
12 = 1

2v ,

Γ2
12 = 0, Γ1

22 = 0, Γ2
22 = 1

2v . Gauss’ Theorema Egregium 3.5 then implies

K =
1

G

[
∂Γ1

22

∂u
− ∂Γ1

12

∂v
+

2∑
s=1

(
Γs22Γ1

1s − Γs12Γ1
2s

)]
=

1

2v3
.

Hence, K is not constant in any open set of S, and so (Corollary 3.2) S cannot be
locally isometric to a sphere. �

Problem 3.11. Let σ : (a, b) → R3 be a biregular curve whose support is
contained in the sphere S2 with radius 1 and center in the origin of R3. Show that
if the curvature of σ is constant then the support of σ is contained in a circle.

Solution. We may assume that σ is parametrized by arc length; moreover,
remember that if we orient S2 as in Example 3.4 we have σ = N ◦ σ. Since the
support of σ is contained in S2, the derivative σ̇ is tangent to S2, and so it is
orthogonal to σ. Further, by Proposition 3.6 (Meusnier) and Example 3.25, the
normal curvature of σ is equal to −1 everywhere, once more because σ takes values
in S2. Hence, (35) and (36) imply 〈σ, ~n〉 ≡ −1/κ.

Now, 1 = ‖σ‖2 = |〈σ, σ̇〉|2 + |〈σ, ~n〉|2 + |〈σ,~b〉|2; since 〈σ, σ̇〉 ≡ 0 and 〈σ, ~n〉 is a

non zero constant, we deduce that 〈σ,~b〉 is a constant too. Hence,

0 =
d

dt
〈σ,~b〉 = −τ〈σ, ~n〉 =

τ

κ
,
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so τ ≡ 0 and σ is plane. But the support of a plane regular curve with constant
curvature is contained in a circle, and we are done. �

Problem 3.12. Put U = (0, 1)× (0, π) and let ϕ : U → R3 be the map defined
by ϕ(u, v) =

(
u cos v, u sin v, φ(v)

)
, where φ ∈ C∞

(
(0, π)

)
is a homeomorphism

with its image.

(i) Show that the image S of ϕ is a regular surface.
(ii) Compute the Gaussian curvature in every point of S and check whether

there exists an open subset of S that is locally isometric to a plane.
(iii) Give conditions for a point of S to be an umbilical point.

Solution. (i) Note that

∂1 = ϕu = (cos v, sin v, 0) ∂2 = ϕv =
(
−u sin v, u cos v, φ′(v)

)
;

hence,

ϕu ∧ ϕv = (φ′(v) sin v,−φ′(v) cos v, u)

is never zero, because its third component is never zero. So the differential of
ϕ is injective in every point. Moreover, ϕ is injective, and ψ : S → U given by

ψ(x, y, z) = (
√
x2 + y2, φ−1(z)) is a continuous inverse of ϕ.

(ii) The metric coefficients are E = 1, F = 0 and G = u2 + φ′(v)2, while

‖ϕu ∧ ϕv‖ =
√
u2 + φ′(v)2. To determine the form coefficients, we compute

ϕuu = (0, 0, 0) , ϕuv = (− sin v, cos v, 0) , ϕvv =
(
−u cos v,−u sin v, φ′′(v)

)
,

and so

e ≡ 0 , f =
−φ′(v)√
u2 + φ′(v)2

, g =
uφ′′(v)√
u2 + φ′(v)2

.

In particular,

K = − φ′(v)2

(u2 + φ′(v)2)2
.

Since φ is injective, φ′ cannot be zero on an interval, so K cannot be zero in an
open set. Consequently, no open subset of S can be locally isometric to a plane.

(iii) Recalling (44), which gives the principal curvatures in terms of the mean
and Gaussian curvatures, the relation that characterizes the umbilical points is
H2 −K = 0. Using (43), we find that the mean curvature of S is given by

H =
1

2

uφ′′(v)

(u2 + φ′(v)2)3/2
,

and so

H2 −K =
1

4

u2φ′′(v)2

(u2 + φ′(v)2)3
+

φ′(v)2

(u2 + φ′(v)2)2
.

Hence we have H2 − K = 0 if and only if φ′(v) = φ′′(v) = 0, and so the umbili-
cal points of S are exactly the points of the form

(
u cos v0, u sin v0, φ(v0)

)
, where

v0 ∈ (0, π) satisfies φ′(v0) = φ′′(v0) = 0. �

Problem 3.13. Let Σ = {(x, y, z) ∈ R3 |xyz = 1}.
(i) Determine the largest subset S of Σ such that S is a regular surface.
(ii) Prove that the points (x, y, z) ∈ S such that |x| = |y| = |z| = 1 are

umbilical points of S.
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Solution. (i) Consider the function f : R3 → R given by f(x, y, z) = xyz.
Since ∇f = (yz, xz, xy), we find that 1 is a regular value for f , and so Σ = S is a
regular surface.

(ii) Let p = (x, y, z) ∈ Σ. In a neighborhood of p, the surface Σ is the
graph of the function g : R∗ × R∗ → R given by g(x, y) = 1/xy. So we may
take as parametrization of Σ near p the parametrization of the graph of g given by
ϕ(u, v) =

(
u, v, g(u, v)

)
. Then, proceeding in the usual way, we find

∂1 =

(
1, 0,− 1

u2v

)
, ∂2 =

(
0, 1,− 1

uv2

)
, N=

1√
u2 + v2 + u4v4

(v, u, u2v2) ,

E = 1 +
1

u4v2
, F =

1

u3v3
, G = 1 +

1

u2v4
,

e =
2v

u
√
u2 + v2 + u4v4

, f =
1√

u2 + v2 + u4v4
, g =

2u

v
√
u2 + v2 + u4v4

,

K =
3u4v4

(u2 + v2 + u4v4)2
, H =

uv(1 + u2v4 + u4v2)

(u2 + v2 + u4v4)3/2
,

H2 −K =
u2v2(1 + u8v4 + u4v8 − u2v4 − u6v6 − u4v2)

(u2 + v2 + u4v4)3
.

In particular, all points of the form ϕ(u, v) with |u| = |v| = 1, that is, all points
p ∈ S with |x| = |y| = |z| = 1, are umbilical points. �

Problem 3.14. Let S be an oriented surface in R3 and σ : R→ S a biregular
curve of class C∞ that is an asymptotic curve of S. Prove that Tσ(s)S is the
osculating plane to σ at σ(s) for all s ∈ R.

Solution. We may assume that σ is parametrized by arc length. Using the
usual notation, we have to show that the versors ~t(s) and ~n(s) span the plane
Tσ(s)S tangent to S at σ(s); in other words, we have to prove that ~t(s) and ~n(s) are

orthogonal to the normal versor N
(
σ(s)

)
. Since ~t(s) ∈ Tσ(s)S, by definition of a

tangent plane to a surface, it suffices to show that ~n(s) and N
(
σ(s)

)
are orthogonal.

But by the biregularity of σ we know that〈
~n(s), N

(
σ(s)

)〉
=

1

κ(s)
Qσ(s)

(
σ̇(s)

)
= 0 ,

since σ is an asymptotic curve. �

Definition 3.P.3. Let S ⊂ R3 be a surface oriented by an atlas A. Then the
atlas A− obtained by exchanging coordinates in all the parametrizations of A, that
is, ϕ ∈ A− if and only if ϕ ◦ χ ∈ A where χ(x, y) = (y, x), is called opposite of A.

Problem 3.15. Let S be a surface oriented by an atlas A, and take another
local parametrization ϕ : U → S of S, with U connected. Prove that either ϕ has
the same orientation as all local parametrizations of A, or has the same orientation
as all local parametrizations of A−.

Solution. Let N be the normal versor field determining the given orientation,
and {∂1, ∂2} the basis induced by ϕ. Exactly as in the proof of Proposition 3.4,
we find that ∂1 ∧ ∂2/‖∂1 ∧ ∂2‖ ≡ ±N on ϕ(U), with constant sign since U is
connected. So (33) implies that if the sign is positive then ϕ determines the same
orientation of all elements of A, while if the sign is negative it determines the
opposite orientation. �
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Problem 3.16. Let S ⊂ R3 be a surface in which the absolute value of the
mean curvature is never zero. Prove that S is orientable.

Solution. Let A = {ϕα} be an atlas on S such that the domain Uα of each
ϕα is connected. Using the usual Gauss map Nα induced by ϕα, we may define
a mean curvature on ϕα(Uα) with a well defined sign, since its absolute value is
never zero and Uα is connected. Up to exchanging coordinates in Uα, we may then
assume that the mean curvature induced by Nα is always positive.

Define now N : S → S2 by setting N(p) = Nα(p) for all p ∈ ϕα(Uα). To
conclude, it suffices to verify that N is well defined, that is it does not depend
on α. Take p ∈ ϕα(Uα)∩ϕβ(Uβ). If we had Nα(p) = −Nβ(p), then we would have
Nα ≡ −Nβ in a whole neighborhood of p; so the mean curvature induced by Nα
and the mean curvature induced by Nβ would have opposite sign in a neighborhood
of p, against our assumptions. �

Problem 3.17. Let p ∈ S be a point of a surface S ⊂ R3. Prove that if p is
elliptic then there exists a neighborhood V of p in S such that V \ {p} is contained
in one of the two open half-spaces bounded by the affine tangent plane p + TpS.
Prove that if, on the other hand, p is hyperbolic then every neighborhood of p in S
intersects both the open half-spaces bounded by the plane p+ TpS.

Solution. Let ϕ : U → S be a local parametrization centered at p, and define
the function d : U → R by setting d(x) =

〈
ϕ(x) − p,N(p)

〉
, where N is the Gauss

map induced by ϕ. Clearly, ϕ(x) ∈ p + TpS if and only if d(x) = 0, and ϕ(x)
belongs to one or the other of the half-spaces bounded by p + TpS depending on
the sign of d(x). Expanding d as a Taylor series around the origin, we get

d(x) = d(O) +

2∑
j=1

∂d

∂xj
(O)xj +

1

2

2∑
i,j=1

∂2d

∂xi∂xj
(O)xixj + o(‖x‖2)

= e(p)x2
1 + 2f(p)x1x2 + g(p)x2

2 + o(‖x‖2)(56)

= Qp(x1∂1 + x2∂2) + o(‖x‖2) .

Now, if p is elliptic then the two principal curvatures at p have the same sign and
are different from zero; in particular, Qp is positive (or negative) definite. But then
(56) implies that d(x) has constant sign in a punctured neighborhood of the origin,
and so there exists a neighborhood V ⊂ S of p such that all points of V \{p} belong
to one of the two open half-spaces bounded by p+ TpS.

If, on the other hand, p is hyperbolic, the two principal curvatures in p have
opposite signs and are different from zero; in particular, Qp is indefinite. Hence
d(x) changes sign in every neighborhood of the origin, and so every neighborhood
of p in S intersects both the open half-spaces bounded by p+ TpS. �

Problem 3.18. Osculating quadric to a level surface. Given a func-
tion f ∈ C∞(Ω) admitting 0 as regular value, where Ω ⊂ R3 is an open set, let
p0 = (xo1, x

o
2, x

o
3) ∈ S = f−1(0) be a point of the level surface of f .

(i) Determine a quadric Q passing through p0 and such that S and Q have
the same tangent plane at p0 and the same second fundamental form. The
quadric Q is called osculating quadric.

(ii) Show that p0 is elliptic, hyperbolic or parabolic for S if and only if it is
for Q.
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(iii) Let S be the surface of R3 of equation x1 + x3
1 + x2

2 + x3
3 = 0. Using the

osculating quadric, show that the point p0 = (−1, 1, 1) is hyperbolic.

Solution. Developing f in Taylor series around p0, we find

f(x) =

3∑
j=1

∂f

∂xj
(p0)(xj − xoj)

+
1

2

3∑
i,j=1

∂2f

∂xi∂xj
(p0)(xi − xoi )(xj − xoj) + o(‖x‖2) .

Choose as Q the quadric determined by the polynomial

P (x) =

3∑
j=1

∂f

∂xj
(p0)(xj − xoj) +

1

2

3∑
i,j=1

∂2f

∂xi∂xj
(p0)(xi − xoi )(xj − xoj) .

So f and P have the same first and second derivatives in p0. Since the tangent plane
to S (respectively, to Q) at p0 is orthogonal to the gradient of f (respectively, P )
at p0, and ∇f(p0) = ∇P (p0), we immediately find that Tp0S = Tp0Q. Moreover,
the differential of the Gauss map of S at p0 only depends on the first derivatives
of ∇f at p0, that is, on the second derivatives of f at p0; since P has the same
(first and) second derivatives at p0 as f , it follows that the differential of the Gauss
map for S acts on Tp0S = Tp0Q like the differential of the Gauss map for Q, and
as a consequence S and Q have the same second fundamental form at p0, and p0 is
elliptic (hyperbolic, parabolic) for S if and only if it is for Q.

In case (iii), the polynomial P is

P (x) = 4(x1 + 1) + 2(x2 − 1) + 3(x3 − 1)− 3(x1 + 1)2 + (x2 − 1)2 + 3(x3 − 1)2 .

The theorem of metric classification for quadrics (see [2, Vol. II, p. 163]) tells us that
the quadric Q is obtained by a rigid motion from a one-sheeted hyperboloid. Since
all points of Q are hyperbolic (see Exercise 3.54), p0 is hyperbolic for S too. �

Definition 3.P.4. A surface S ⊂ R is ruled if there exists a family {rλ}λ∈R of
disjoint open line segments (or whole straight lines) whose union is S. The lines rλ
are called generators (or rulings) of S. A cone is a ruled surface whose generators
all pass through a common point.

Problem 3.19. Let S be a ruled (regular) surface. Show that S does not
contain elliptic points, and as a consequence K ≤ 0 in each point of S.

Solution. By definition, for each point p ∈ S, there is a line segment contained
in S and passing through p. A line segment within a surface always has zero normal
curvature; so every point p ∈ S has an asymptotic direction, which necessarily
implies K(p) ≤ 0. �

Problem 3.20. Tangent surface to a curve. Let σ : I → R3 be a regular
curve of class C∞, with I ⊆ R an open interval. The map ϕ̃ : I × R→ R3, defined
by ϕ̃(t, v) = σ(t) + v σ′(t), is called tangent surface to σ. Every affine tangent line
to σ is called a generator of the tangent surface.

(i) Show that ϕ̃ is not an immersed surface.
(ii) Show that if the curvature κ of σ is nowhere zero then the restriction

ϕ = ϕ̃|U : U → R3 of ϕ̃ to the subset U = {(t, v) ∈ I × R | v > 0} is an
immersed surface.
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(iii) Show that the tangent plane along a generator of the tangent surface is
constant in S = ϕ(U).

Solution. (i) It suffices to prove that the differential of ϕ̃ is not injective
somewhere. Since ϕt = σ′ + v σ′′ and ϕv = σ′, we have ϕt ∧ ϕv = v σ′′ ∧ σ′. So,
using the expression (13) of the curvature of a curve in an arbitrary parameter, we
find

‖ϕt ∧ ϕv‖ = |v| ‖σ′‖3κ .
In particular, the differential of ϕ is not injective when v = 0.

(ii) More precisely, we have proved that the differential of ϕ is injective in (t, v)
if and only if v 6= 0 and κ(t) 6= 0, and so ϕ is an immersed surface.

(iii) It is sufficient to remark that the direction of the vector ϕt∧ϕv is orthogonal
to the tangent plane to S at the required point. Since this direction does not depend
on v, the tangent plane is constant along a generator of S. �

Exercises

FIRST FUNDAMENTAL FORM

3.1. Determine the metric coefficients and the first fundamental form for the
regular surface with global parametrization ϕ(u, v) = (u, v, u4 + v4).

3.2. Let S ⊂ R3 be the surface with global parametrization ϕ : R+×R+ → R3

given by ϕ(u, v) = (u cos v, u sin v, u). Prove that the coordinate curves of ϕ are
orthogonal to each other in every point.

3.3. Let S ⊂ R3 be the catenoid, parametrized as in Problem 2.1. Given r ∈ R,
let σ : R → S be the curve contained in the catenoid defined by σ(t) = ϕ(t, rt).
Compute the length of σ between t = 0 and t = t0, using the first fundamental
form of S.

3.4. Let ϕ : R+ × (0, 2π)→ R3 be the local parametrization of the one-sheeted
cone S ⊂ R3 given by ϕ(u, v) = (u cos v, u sin v, u). Given β ∈ R, determine the

length of the curve σ : [0, π]→ S expressed by σ(t) = ϕ(et cotan(β)/
√

2, t).

3.5. Let S ⊂ R3 be a regular surface with local parametrization ϕ(u, v) whose
metric coefficients satisfy E ≡ 1 and F ≡ 0. Show that the coordinate v-curves cut
each u-curve in segments of equal length.

3.6. Determine the metric coefficients of the unit sphere S2 ⊂ R3 with respect
to the parametrization found by using the stereographic projection (see Exercise
2.4).

3.7. Determine the first fundamental form of the xy-plane minus the origin,
parametrized by polar coordinates.

ISOMETRIES AND SIMILITUDES

3.8. Find two surfaces S1 and S2 such that S1 is locally isometric to S2 but S2

is not locally isometric to S1.
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3.9. Determine for which values of a, b ∈ R the surface

Sa,b = {(x, y, z) ∈ R3 | z = a x2 + b y2}
is locally isometric to a plane.

3.10. Let σ = (σ1, σ2) : R → R2 be a regular plane curve parametrized by arc
length. Let S ⊂ R3 be the right cylinder on σ parametrized by

ϕ(u, v) =
(
σ1(u), σ2(u), v

)
.

Prove that S is locally isometric to the cylinder of equation x2 + y2 + 2x = 0.

3.11. Let H : S → S̃ be a similitude with scale factor r > 0. Given a local
parametrization ϕ : U → S, put ϕ̃ = H ◦ϕ and let E, F , G (respectively, Ẽ, F̃ , G̃)

be the metric coefficients with respect to ϕ (respectively, ϕ̃). Prove that Ẽ = r2E,

F̃ = r2F and G̃ = r2G.

ORIENTABLE SURFACES

3.12. Let σ, τ : R→ R3 be the trajectories, parametrized by arc length, of two
points that are moving subject to the following conditions:

(a) σ starts at σ(0) = (0, 0, 0), and moves along the x-axis in the positive
direction;

(b) τ starts at τ(0) = (0, a, 0), where a 6= 0, and moves parallel to the positive
direction of the z-axis.

Denote by S ⊂ R3 the union of the straight lines passing through σ(t) and τ(t) as
t varies in R.

(i) Prove that S is a regular surface.
(ii) Find, for every point p ∈ S, a basis of the tangent plane TpS.
(iii) Prove that S is orientable.

3.13. Let S ⊂ R3 be a surface oriented by an atlas A = {ϕα}. Given p ∈ S and
a basis {v1, v2} of TpS, prove that {v1, v2} is a positive basis of TpS if and only if it
determines on TpS the same orientation as the basis {∂1,α|p, ∂2,α|p} for all ϕα ∈ A
such that p belongs to the image of ϕα.

3.14. How many orientations does an orientable surface admit?

3.15. Determine a normal versor field for the surface S in R3 with global param-
etrization ϕ : R2 → R3 given by ϕ(u, v) = (eu, u + v, u), and compute the angle
between the coordinate curves.

3.16. Determine a normal versor field for the surface S in R3 of equation
z = exy. Find for which values of λ, µ ∈ R the vector (λ, 0, µ) is tangent to S
at p0 = (0, 0, 1).

3.17. Let S ⊂ R3 be a surface oriented by an atlas A, and let A− be the
opposite of A. Prove that A− is also oriented, and that all ϕ ∈ A and ϕ− ∈ A−
with intersecting images determine opposite orientations.
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SECOND FUNDAMENTAL FORM

3.18. Prove that if S is an oriented surface with dN ≡ O then S is contained
in a plane.

3.19. Let S be a regular level surface defined by F (x, y, z) = 0, with F ∈ C∞(U)
and U ⊂ R3 open. Show that, for all p ∈ S, the second fundamental form Qp is

the restriction to TpS of the quadratic form on R3 induced by the Hessian matrix
Hess(F )(p).

3.20. Consider the surface in R3 parametrized by ϕ(u, v) = (u, v, u2 + v2).
Determine the normal curvature of the curve t 7→ ϕ(t2, t) contained in it.

3.21. Determine the normal curvature of a regular curve σ whose support is
contained in a sphere of radius 3.

PRINCIPAL, GAUSSIAN AND MEAN CURVATURES

3.22. Let σ : I → R3 be a biregular curve parametrized by arc length, and
assume there is M > 0 such that κ(s) ≤ M for all s ∈ I. For all ε > 0 let
ϕε : I × (0, 2π)→ R3 be given by

ϕε(s, θ) = σ(s) + ε cos θ n(s) + ε sin θ b(s).

(i) Prove that if ε < 1/M then dϕεx is injective for all x ∈ I × (0, 2π).
(ii) Assume that there exists ε > 0 such that ϕε is globally injective and a

homeomorphism with its image, so that it is a local parametrization of
a surface Sε = ϕε

(
I × (0, 2π)

)
. Find a normal versor field on Sε, and

compute the Gaussian and mean curvatures of Sε.
(iii) Prove that for any interval [a, b] ⊂ I there exists ε > 0 such that the

restriction ϕε|(a,b)×(0,2π) is globally injective and a homeomorphism with
its image.

3.23. Let ρ : R → R be a C∞ function, and let ϕ : R × (0, 2π) → R3 be given
by

ϕ(z, θ) =
(
ρ(z) cos θ, ρ(z) sin θ, z).

(i) Prove that ϕ parametrizes a regular surface S if and only if ρ is nowhere
zero.

(ii) When S is a surface, write using ρ the first fundamental form with respect
to the parametrization ϕ, and compute the Gaussian curvature of S.

3.24. Let S ⊂ R3 be the paraboloid of revolution of equation z = x2 + y2.

(i) Compute the Gaussian and mean curvatures of S at each point.
(ii) Compute the principal directions of S at the points of the support of the

curve σ : R→ S given by

σ(t) = (2 cos t, 2 sin t, 4) .

3.25. Prove that H2 ≥ K always on an orientable surface S. For which points
p ∈ S does equality hold?

3.26. Prove that cylinders have Gaussian curvature equal to zero everywhere.
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3.27. Prove that the Gaussian curvature of a sphere with radius R > 0 is
K ≡ 1/R2, while its mean curvature (with respect to the usual orientation) is
H ≡ −1/R.

3.28. Let σ = (σ1, σ2) : R → R2 be a regular plane curve parametrized by arc
length. Let S ⊂ R3 be the right cylinder on σ parametrized by

ϕ(u, v) =
(
σ1(u), σ2(u), v) .

Find the curvatures and the principal directions of S as functions of the curvature κ
of σ.

3.29. Denote by S ⊂ R3 the subset

S = {(x, y, z) ∈ R3 | (1 + |x|)2 − y2 − z2 = 0} .
(i) Prove that T = S ∩ {(x, y, z) ∈ R3 | x > 0} is a regular surface.

(ii) Prove that S is not a regular surface.
(iii) Compute the Gaussian curvature and the mean curvature of T .

3.30. Let S ⊂ R3 be a surface, and H ⊂ R3 a plane such that C = H ∩ S is
the support of a regular curve. Assume moreover that H is tangent to S at every
point of C. Prove that the Gaussian curvature of S is zero at each point of C.

3.31. Let S ⊂ R3 be an orientable surface, and let N be a normal versor field
on S. Consider the map F : S × R→ R3 defined by F (p, t) = p+ tNp.

(i) Show that F is smooth.
(ii) Show that the differential dF is singular at the point (p, t) if and only if
−1/t is one of the principal curvatures of S at p.

3.32. Prove that a surface with Gaussian curvature positive everywhere is nec-
essarily orientable.

3.33. Let ϕ : R2 → R3 be given by

ϕ(u, v) = (eu cos v, ev cosu, v) .

(i) Find the largest c > 0 such that ϕ restricted to R × (−c, c) is a local
parametrization of a regular surface S ⊂ R3.

(ii) Prove that the Gaussian curvature of S is nowhere positive.

(Hint: use the well-known formula K = (eg − f2)/(EG − F 2), without explicitly
computing eg − f2.)

3.34. Let ϕ : U → S be a local parametrization of a surface S ⊂ R3, and let N
be the Gauss map induced by ϕ. Show that we have Nu ∧Nv = K(ϕu ∧ϕv), where
K is the Gaussian curvature.

3.35. Let σ : [a, b] → R3 be a regular closed curve of class C∞. Assume that
the support of σ is contained in the ball with center in the origin and radius r.
Show that there exists at least one point where σ has curvature at least 1/r.

3.36. Let σ : R→ R3 be a regular curve of class C∞. Assume that the curvature
of σ is greater than 1/r at every point. Is it true that the support of σ is contained
in a ball of radius r?
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Figure 8. Enneper’s surface

LINES OF CURVATURE

3.37. Let ϕ : R2 → R3 be the immersed surface (Enneper’s surface; see Fig. 8)
given by

ϕ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

(i) Prove that a connected component S of ϕ(R2) \ ({x = 0} ∪ {y = 0}) is a
regular surface.

(ii) Show that the metric coefficients of S are F ≡ 0, E = G = (1 +u2 + v2)2.
(iii) Prove that the form coefficients of S are e = 2, g = −2, f = 0.
(iv) Compute the principal curvatures of S at each point.
(v) Determine the lines of curvature of S.

3.38. Let S ⊂ R3 be an oriented surface with Gauss map N : S → S2, and
take p ∈ S.

(i) Prove that a vector v ∈ TpS is a principal direction if and only if〈
dNp(v) ∧ v,N(p)

〉
= 0.

(ii) If S = f−1(a) is a level surface at a regular value a ∈ R for some function
f ∈ C∞(R3) prove that a vector v ∈ TpS is a principal direction if and
only if

det

∣∣∣∣∣∣∣∣∣∣∣∣

∂f
∂x1

(p)
3∑
i=1

vi
∂2f

∂xi∂x1
(p) v1

∂f
∂x2

(p)
3∑
i=1

vi
∂2f

∂xi∂x2
(p) v2

∂f
∂x3

(p)
3∑
i=1

vi
∂2f

∂xi∂x3
(p) v3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

3.39. Assume that two surfaces in R3 intersect along a curve σ in such a way
that the tangent planes form a constant angle. Show that if σ is a line of curvature
in one of the two surfaces it is a line of curvature in the other surface too.
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ISOMETRIES, AGAIN

3.40. Let ϕ : (0, 2π)×(0, 2π)→ R3 be the global parametrization of the surface
S ⊂ R3 given by

ϕ(u, v) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
.

(i) Determine the metric and form coefficients.
(ii) Determine the principal curvatures and the lines of curvature.
(iii) Determine whether S is locally isometric to a plane.

3.41. Let ϕ, ϕ̃ : R+ × (0, 2π)→ R3 be given by

ϕ(u, v) = (u cos v, u sin v, log u), ϕ̃(u, v) = (u cos v, u sin v, v) ;

the image S of ϕ is the surface of revolution generated by the curve (t, log t), while

the image S̃ of ϕ̃ is a portion of an helicoid. Prove that K ◦ ϕ ≡ K̃ ◦ ϕ̃, where K
(respectively, K̃) is the Gaussian curvature of S (respectively, S̃), but that ϕ̃ ◦ϕ−1

is not an isometry. Prove next that S and S̃ are not locally isometric. (Hint: in
these parametrizations K depends on a single parameter, which can be determined
in the same way in both surfaces. Assuming the existence of a local isometry, write
the action on the coefficients of the first fundamental form: since the conditions
imposed by the equality on these coefficients cannot be satisfied, the local isometry
cannot exists. )

ASYMPTOTIC CURVES

3.42. Let S ⊂ R3 be the surface with global parametrization ϕ : R2 → R3 given
by ϕ(u, v) = (u, v, uv).

(i) Determine the asymptotic curves of S.
(ii) Determine the values the curvature of the normal sections of S takes at

the origin.

3.43. Let σ be a regular curve of class C∞ on a surface S in R3. Show that if
σ is an asymptotic curve then the normal to σ is always tangent to S.

3.44. Let S be a regular surface in R3.

(i) Show that if ` is a line segment contained in S then ` is an asymptotic
curve for S.

(ii) Show that if S contains three distinct line segments passing through a
given point p ∈ S then the second fundamental form of S at p is zero,
that is, p is a planar point.

3.45. Determine the asymptotic curves of the regular surface (see also Exer-
cise 3.1) with global parametrization ϕ(u, v) = (u, v, u4 + v4).

3.46. Let p be a point of a regular surface S ⊂ R3. Assume that at p there are
exactly two distinct asymptotic directions. Show that there exist a neighborhood
U of p in S and two maps X, Y : U → R3 of class C∞ such that for all q ∈ U the
vectors X(q) and Y (q) are linearly independent and asymptotic tangent vectors to
S at q.
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ELLIPTIC, HYPERBOLIC, PARABOLIC, PLANAR AND UMBILI-
CAL POINTS

3.47. Characterization of umbilical points. Show that a point p of a
regular surface S is umbilical if and only if, in a local parametrization of S, the
first and the second fundamental form are equal. In particular, show that, when
the form coefficients are different from zero, the point p is umbilical if and only if

E

e
≡ F

f
≡ G

g
,

and that in this case the normal curvature equals κn = E/e.

3.48. Let S be the graph of the function f(x, y) = x4 +y4. Prove that the point
O ∈ S is planar and that S lies within one of the two closed half-spaces bounded
by the plane TOS.

3.49. Find the umbilical points of the two-sheeted hyperboloid of equation

x2

a2
+
y2

b2
− z2

c2
= −1.

3.50. Find the umbilical points of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 .

3.51. Let S be a connected regular surface in which every point is planar. Show
that S is contained in a plane.

3.52. Let S be a closed, connected regular surface in R3. Show that S is a
plane if and only if through every point p of S (at least) three distinct straight lines
lying entirely in S pass.

3.53. Let S be the graph of the function f(x, y) = x3 − 3y2x (this surface is
sometimes called monkey saddle). Show that the point O ∈ S is planar and that
every neighborhood of O in S intersects both the open half-spaces bounded by the
plane TOS.

3.54. Let Q be a quadric in R3 such that Q is a regular surface but not a plane
(see Problem 2.4).

(i) Show that Q has no parabolic points.
(ii) Show that if Q has a hyperbolic point then all points of Q are hyperbolic.
(iii) Conclude that if Q has an elliptic point, then all points are elliptic.
(iv) Determine which quadrics have only hyperbolic points and which quadrics

have only elliptic points.

3.55. Determine whether the origin O is an elliptic, hyperbolic, parabolic or
planar point in the surface of equation

(i) z − xy = 0;
(ii) z − y2 − x4 = 0;
(iii) x+ y + z − x2 − y2 − z3 = 0.

GAUSS’ THEOREMA EGREGIUM

3.56. Compute the Christoffel symbols for the polar coordinates of the plane.
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3.57. Prove that the Christoffel symbols can be computed using the following
formula:

Γkij =
1

2

2∑
l=1

gkl
(
∂gil
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
,

where g11 = E, g12 = g21 = F , g22 = G, and (gij) is the inverse matrix of matrix
(gij).

3.58. Check that the equations (53) written for the other possible values of i,
j, k and r are either trivially satisfied, or a consequence of the symmetry of the
Christoffel symbols, or equivalent to (54).

3.59. Let E be the ellipsoid of equation

1

4
x2 + y2 +

1

9
z2 = 3 .

(i) Compute the Gaussian curvature K and the principal directions of E at
the point p = (2, 1, 3) ∈ E.

(ii) Compute the integral of the Gaussian curvature K on the intersection of
E with the octant

Q = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0} .
3.60. Check that the compatibility conditions that are a consequence of the

identity ∂2(N ◦ϕ)/∂xi∂xj ≡ ∂2(N ◦ϕ)/∂xj∂xi are either always satisfied or equiv-
alent to (55).

CONFORMAL MAPS

Definition 3.E.1. A map H : S1 → S2 of class C∞ between two surfaces in R3

is conformal if there exists a function λ : S1 → R∗ of class C∞ nowhere vanishing
such that

〈dHp(v1),dHp(v2)〉H(p) = λ2(p)〈v1, v2〉p
for all p ∈ S1 and all v1, v2 ∈ TpS1. The map H is locally conformal at p if there
are neighborhoods U1 of p in S1 and U2 of H(p) in S2 such that the restriction of
H|U1 : U1 → U2 is conformal. Two surfaces S1 and S2 are conformally equivalent
if there exists a conformal diffeomorphism H : S1 → S2. Finally, S1 is locally
conformal to S2 if for all p ∈ S1 there exist a point q ∈ S2 and a conformal
diffeomorphism between a neighborhood of p in S1 and a neighborhood of q in S2.

3.61. Show that the stereographic projection (see Exercise 2.4) is a conformal
map.

3.62. Prove an analogue of Proposition 3.1 for conformal maps: Let S, S̃ ⊂ R3

be two surfaces. Then S is locally conformal to S̃ if and only if for every point p ∈ S
there exist a point p̃ ∈ S̃, an open set U ⊆ R2, a function λ ∈ C∞(U) nowhere zero,
a local parametrization ϕ : U → S of S centered at p, and a local parametrization
ϕ̃ : U → S̃ of S̃ centered at p̃ such that Ẽ ≡ λ2E, F̃ ≡ λ2F and G̃ ≡ λ2G, where
E, F , G (respectively, Ẽ, F̃ , G̃) are the metric coefficients of S with respect to ϕ

(respectively, of S̃ with respect to ϕ̃).

Definition 3.E.2. A local parametrization of a surface S is called isothermal
if E ≡ G e F ≡ 0.
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3.63. Prove that two surfaces both having an atlas consisting of isothermal local
parametrizations are locally conformal. (Remark : It is possible to prove that every
regular surface admits an atlas consisting of isothermal local parametrizations; as
a consequence, two regular surfaces are always locally conformal.)

3.64. Let ϕ : U → S be a isothermal local parametrization. Prove that

ϕuu + ϕvv = 2EHN , and that K = −∆ logG

G
,

where ∆ denotes the Laplacian.

RULED SURFACES

Definition 3.E.3. A conoid in R3 is a ruled surface in R3 whose rulings are
parallel to a plane H and intersect a straight line `. The conoid is said to be right
if the line ` is orthogonal to the plane H. The line ` is called axis of the conoid.

3.65. Show that the right helicoid parametrized as in Problem 2.2 is a right
conoid.

3.66. Let S ⊂ R3 be a right conoid having rulings parallel to the plane z = 0
and the z-axis as its axis. Prove that it is the image of a map ϕ : R2 → R3 of the
form

ϕ(t, v) =
(
v cos f(t), v sin f(t), t

)
,

where f : R→ R is such that f(t) is a determination of the angle between the ruling
contained in z = t and the plane y = 0. Prove that the map ϕ is an immersed
surface if f is of class C∞.

3.67. Prove that the cylinders introduced in Definition 2.P.3 are ruled surfaces.

3.68. Given a regular curve σ : I → R3 of class C∞, and a curve ~v : I → S2 of
class C∞ on the sphere, let ϕ : I × R∗ → R3 be defined by

(57) ϕ(t, v) = σ(t) + v ~v(t) .

Prove that ϕ is an immersed surface if and only if ~v and σ′ + v~v′ are everywhere
linearly independent. In this case, ϕ is called a parametrization in ruled form of its
support S, the curve σ is called base curve or directrix , and the lines v 7→ ϕ(t0, v)
are called (rectilinear) generators of S.

3.69. Let S ⊂ R3 be the hyperbolic paraboloid of equation z = x2 − y2.

(i) Find two parametric representations in ruled form (see Exercise 3.68) of
S, corresponding to two different systems of generators.

(ii) Determine the generators of the two systems passing through the point
p = (1, 1, 0).

3.70. Prove that the tangent plane at the points of a generator of the (non-
singular part of the) tangent surface (see Problem 3.20) to a biregular curve C
coincides with the osculating plane to the curve C at the intersection point with
the generator.

3.71. Let σ : I → R3 be a regular plane curve of class C∞, parametrized by arc
length, with curvature 0 < κ < 1. Let ϕ : I× (0, 2π)→ R3 be the immersed surface

given by ϕ(t, v) = σ(t) + cos v ~n(t) +~b(t).
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(i) Determine the Gaussian curvature and the mean curvature at every point
of the support S of ϕ.

(ii) Determine the lines of curvature at each point of S.

3.72. Let σ : I → R3 be a biregular curve of class C∞, parametrized by arc
length, and let ϕ : I × (−ε, ε)→ R3 be the map given by ϕ(s, λ) = σ(s) + λ~n(s).

(i) Show that, when ε is small enough, ϕ is a global parametrization of a
surface S, called normal surface of σ.

(ii) Show that the tangent plane to S at a point of σ is the osculating plane
to σ.

MINIMAL SURFACES

Definition 3.E.4. A surface S ⊂ R3 is minimal if its mean curvature vanishes
everywhere.

3.73. Prove that there are no compact minimal surfaces.

3.74. Let ϕ : U → S be a global parametrization of a surface S. Given
h ∈ C∞(U), the normal variation of ϕ along h is the map ϕh : U × (−ε, ε) → R3

defined by
ϕh(x, t) = ϕ(x) + t h(x)N

(
ϕ(x)

)
,

where N : ϕ(U)→ S2 is the Gauss map induced by ϕ.

(i) Prove that for every open set U0 ⊂ U with compact closure in U there
exists an ε > 0 such that ϕh|U0×(−ε,ε) is an immersed surface.

(ii) Let R ⊂ U be a regular region, and AhR : (−ε, ε)→ R the function defined
by AhR(t) = Area

(
ϕh(R)

)
. Prove that AhR is differentiable at zero and that

dAhR
dt

(0) = −
∫
ϕh(R)

2hH dν .

(iii) Prove that ϕ(U) is minimal if and only if

dAhR
dt

(0) = 0

for every h ∈ C∞(U) and every regular region R ⊂ U .

3.75. Prove that the catenoid is a minimal surface, and that no other surface
of revolution is minimal.

3.76. Prove that the helicoid is a minimal surface. Conversely, prove that if
S ⊂ R3 is a minimal ruled surface whose planar points are isolated then S is a
helicoid. (Hint: Exercise 1.61 can help.)

3.77. Prove that Enneper’s surface (see Exercise 3.37) is minimal where it is
regular.

3.78. Let S ⊂ R3 be an oriented surface without umbilical points. Prove that
S is a minimal surface if and only if the Gauss map N : S → S2 is a conformal map.
Use this result to construct isothermal local parametrizations on minimal surfaces
without umbilical points.
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