Mid-term exam for the course "Differential geometry", October 13, 2023

- 1. Let $S \subset \mathbb{R}^3$ be a connected subset of \mathbb{R}^3 . Assume that there exists a family $\{S_\alpha\}$ of surfaces in \mathbb{R}^3 such that
- (i) every $S_{\alpha} \subseteq S$ is open in S and
- (ii) $S = \bigcup_{\alpha} S_{\alpha}$.

Prove that S is a surface.

2. Determine the tangent plane at each point of the hyperbolic paraboloid $S \subset \mathbb{R}^3$ of equation $x^2 - y^2 - z = 0$ using the global parametrization $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\varphi(x_1, x_2) = (x_1, x_2, x_1^2 - x_2^2)$$
.