IMM-LUMS LAHORE ADVANCED TOPOLOGY

Assignment 2

Exercise 1. Let (X, d) be a metric space with the induced topology. Consider $X \times X$ with the product topology and \mathbb{R} with the Euclidean topology. Prove that $d \colon X \times X \to \mathbb{R}$ is continous.

Exercise 2. Consider the function sgn: $\mathbb{R} \to \{-1,0,1\}$ defined by $\operatorname{sgn}(0) = 0$ and $\operatorname{sgn}(x) = x/|x|$ for $x \neq 0$. Describe the quotient topology on $\{-1,0,1\}$.

Exercise 3. On \mathbb{R} , consider the equivalence relation $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Describe the quotient topology on \mathbb{R}/\sim .

Exercise 4. Consider the real line \mathbb{R} endowed with the co-countable topology (namely, the proper closed subsets are the subsets with cardinality at most countable). Which subsets are connected? Is it path-connected?

Exercise 5. Consider \mathbb{R} endowed with the Euclidean topology. Prove that there exists no continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ and $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$.

Date: Due by: January 29th, 2024.