IMM-LUMS LAHORE ADVANCED TOPOLOGY

Exam 1

Exercise 1. On \mathbb{R} , consider the family

$$\tau = \{ U \subseteq \mathbb{R} : U \supseteq \mathbb{N} \} \cup \{ \emptyset \}.$$

- Prove that τ is a topology on \mathbb{R} .
- For any subset $Y \subseteq \mathbb{R}$, compute its interior \mathring{Y} and its closure \overline{Y} .
- Is (\mathbb{R}, τ) connected?
- Is (\mathbb{R}, τ) compact?
- Is the function $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau), f(x) = x + 1$ continuous?

Exercise 2. On \mathbb{R} , define

$$\delta \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \delta(x, y) = |\arctan x - \arctan y|.$$

- Prove that δ is a distance.
- Denote by d the Euclidean distance. Does there exist c > 0 such that $c^{-1} \cdot d(x, y) < \delta(x, y) < c \cdot d(x, y)$ for any $x, y \in \mathbb{R}$?
- Prove that δ is topologically equivalent to the Euclidean metric.

Exercise 3. Consider $X := [-1, 1] \subseteq \mathbb{R}$ with the subspace topology. Consider the equivalence relation:

$$x \sim y$$
 if and only if $|x| = |y| < 1$ or $x = y$.

Consider the quotient X/\sim with the quotient topology.

- Describe the open subsets of X/\sim .
- Is X/\sim Hausdorff?
- Does X/\sim have the T_1 -separation property?

Exercise 4. Let (X, d) be a metric space. Fix $\varepsilon > 0$. We say that two points $x, y \in X$ are ε -chain connected if there exists a finite set of points $z_0 = x, z_1, \ldots, z_{n-1}, z_n = y$ such that $d(z_i, z_{i+1}) < \varepsilon$ for any i.

• Prove that if X is connected, then for any $\varepsilon > 0$, any points $x, y \in X$ are ε -chain connected.

Date: February 13rd, 2024.

Exercise 5. For any $v \in \mathbb{R}^2$, $v \neq 0$, consider the function $\ell_v \colon \mathbb{R} \to \mathbb{R}^2$, $\ell_v(t) = tv$. Let τ be the finest topology on \mathbb{R}^2 that makes $\ell_v \colon (\mathbb{R}, \tau_{\text{Eucl}}) \to (\mathbb{R}^2, \tau)$ continuous for every $v \neq 0$.

- Is (\mathbb{R}^2, τ) Hausdorff?

- Does (R², τ) admit a countable subset?
 Does (R², τ) admit a countable basis?
 Is (R², τ) connected or connected by path?
 Is (R², τ) metrizable?