IMM-LUMS LAHORE ADVANCED TOPOLOGY ## Exam 1 **Exercise 1.** On \mathbb{R} , consider the family $$\tau = \{ U \subseteq \mathbb{R} : U \supseteq \mathbb{N} \} \cup \{ \emptyset \}.$$ - Prove that τ is a topology on \mathbb{R} . - For any subset $Y \subseteq \mathbb{R}$, compute its interior \mathring{Y} and its closure \overline{Y} . - Is (\mathbb{R}, τ) connected? - Is (\mathbb{R}, τ) compact? - Is the function $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau), f(x) = x + 1$ continuous? Exercise 2. On \mathbb{R} , define $$\delta \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \delta(x, y) = |\arctan x - \arctan y|.$$ - Prove that δ is a distance. - Denote by d the Euclidean distance. Does there exist c > 0 such that $c^{-1} \cdot d(x, y) < \delta(x, y) < c \cdot d(x, y)$ for any $x, y \in \mathbb{R}$? - Prove that δ is topologically equivalent to the Euclidean metric. **Exercise 3.** Consider $X := [-1, 1] \subseteq \mathbb{R}$ with the subspace topology. Consider the equivalence relation: $$x \sim y$$ if and only if $|x| = |y| < 1$ or $x = y$. Consider the quotient X/\sim with the quotient topology. - Describe the open subsets of X/\sim . - Is X/\sim Hausdorff? - Does X/\sim have the T_1 -separation property? **Exercise 4.** Let (X, d) be a metric space. Fix $\varepsilon > 0$. We say that two points $x, y \in X$ are ε -chain connected if there exists a finite set of points $z_0 = x, z_1, \ldots, z_{n-1}, z_n = y$ such that $d(z_i, z_{i+1}) < \varepsilon$ for any i. • Prove that if X is connected, then for any $\varepsilon > 0$, any points $x, y \in X$ are ε -chain connected. Date: February 13rd, 2024. **Exercise 5.** For any $v \in \mathbb{R}^2$, $v \neq 0$, consider the function $\ell_v \colon \mathbb{R} \to \mathbb{R}^2$, $\ell_v(t) = tv$. Let τ be the finest topology on \mathbb{R}^2 that makes $\ell_v \colon (\mathbb{R}, \tau_{\text{Eucl}}) \to (\mathbb{R}^2, \tau)$ continuous for every $v \neq 0$. - Is (\mathbb{R}^2, τ) Hausdorff? - Does (R², τ) admit a countable subset? Does (R², τ) admit a countable basis? Is (R², τ) connected or connected by path? Is (R², τ) metrizable?