## IMM-LUMS LAHORE 2024/2025 ADVANCED TOPOLOGY

## Exam 1

**Exercise 1.** On  $\mathbb{R}$ , consider the collection of subsets that are closed under addition:

$$\mathcal{B} = \{ K \subseteq \mathbb{R} : \forall x, y \in K, x + y \in K \}.$$

- (a) Prove that  $\mathcal{B}$  is the basis of a topology  $\tau$  on  $\mathbb{R}$ .
- (b) Describe the open sets in  $\tau$  that contain only a finite number of points.
- (c) Is  $(\mathbb{R}, \tau)$  connected?
- (d) Is  $(\mathbb{R}, \tau)$  compact?
- (e) Prove that the linear functions  $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$  given by  $f(x) = \lambda \cdot x$ , where  $\lambda \in \mathbb{R}$ , are continuous.

**Solution.** Note that  $\mathbb{R} \in \mathcal{B}$ , and that, if  $K_1, K_2 \in \mathcal{B}$ , then also  $K_1 \cap K_2 \in \mathcal{B}$ , therefore  $\mathcal{B}$  is a basis for some topology on  $\mathbb{R}$ .

Note that, if  $K \in \mathcal{B}$  contains a positive real number  $\alpha > 0$ , then it also contains  $n \cdot \alpha$  for any  $n \in \mathbb{N} \setminus \{0\}$ , then it contains infinitely many points; the same argument also applies when  $K \in \mathcal{B}$  contains a negative real number. Then, the only non-empty finite open set is  $\{0\} \in \mathcal{B}$ .

The topology  $\tau$  is not connected: more precisely,  $\mathbb{R} = (-\infty, 0) \cup \{0\} \cup (0, +\infty)$  with  $(-\infty, 0)$ ,  $\{0\}$ ,  $\{0, +\infty\}$  disjoint clopen sets.

The topology  $\tau$  is not compact: for instance,  $\{\mathbb{N}\cdot x\}_{x\in\mathbb{R}}$  is a collection of open subsets that cover  $\mathbb{R}$ ; but any finite subfamily contains at most countable many points, therefore cannot cover the whole  $\mathbb{R}$ .

Consider  $f : \mathbb{R} \to \mathbb{R}$ ,  $f(x) = \lambda \cdot x$  where  $\lambda \in \mathbb{R}$ . To check whether it is continuous, it is enough to check whether, for every  $K \in \mathcal{B}$ , we have  $f^{-1}(K) \in \tau$ . Note that, if  $x, y \in f^{-1}(K)$ , then  $\lambda x, \lambda y \in K \in \mathcal{B}$ , therefore  $\lambda x + \lambda y = \lambda(x + y) \in K$ , then  $x + y \in f^{-1}(K)$ . Therefore,  $f^{-1}(K) \in \mathcal{B}$  is open.

**Exercise 2.** Consider  $\mathbb{R}$  endowed with the Euclidean topology, and  $\mathbb{R}^{\mathbb{N}} = \{(x_n)_n : x_n \in \mathbb{R} \text{ for evey } n \in \mathbb{N}\}$ , the space of real sequences, endowed with the product topology. Prove that the diagonal

$$\Delta = \{(x_n)_n : x_n = x_0 \text{ for every } n \in \mathbb{N}\} \subset \mathbb{R}^{\mathbb{N}}$$

is a closed subset. What happens if we consider the box topology on  $\mathbb{R}^{\mathbb{N}}$  in place of the product topology?

Date: February 17th, 2025.

**Solution.** The diagonal  $\Delta$  contains the constant sequences. Consider a sequence  $(x_n)_n \notin \Delta$ , a non-constant sequence. Therefore there exist  $h \neq k$  such that  $x_h \neq x_k$ . Since  $\mathbb{R}$  is Hausdorff, then there exist  $U_h \ni x_h$ ,  $U_k \ni x_k$  open neighbourhoods such that  $U_h \cap U_k = \emptyset$ . By denoting  $p_i \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$  the *i*th natural projection, we have that  $U := p_h^{-1}(U_h) \cap p_k^{-1}(U_k)$  is an open neighbourhood of  $(x_n)_n$  (in both the product and the box topologies) such that  $U \cap \Delta = \emptyset$ . Therefore  $\Delta^c$  is open, then  $\Delta$  is closed.

**Exercise 3.** On  $\mathbb{R}^2$ , consider  $\delta \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$  defined by

$$\delta(v,w) = \left\{ \begin{array}{ll} \|v-w\| & \text{if} \quad v,w \text{ are linearly dependent,} \\ \|v\| + \|w\| & \text{if} \quad v,w \text{ are linearly independent.} \end{array} \right.$$

- Prove that  $\delta$  is a metric.
- Denote the induced topology by  $\tau$ . Is  $(\mathbb{R}^2, \tau)$  connected? Is it path-connected?
- What is the topology induced on  $S^1 \subseteq (\mathbb{R}^2, \tau)$  as a subspace?

**Solution.** It is clear that  $\delta$  is non-negative and symmetric. It is also clear that  $\delta(v,w)=0$  if and only if v=w: indeed, if  $\|v\|+\|w\|=0$  then v=w=0 but therefore they are not linearly independent; if  $\|v-w\|=0$  then v=w. On every line through the origin, the induced topology is the Euclidean one. In particular, the function  $\alpha_v \colon [0,1] \to \mathbb{R}^2$  defined by  $\alpha(t)=t\cdot v$  for some fixed  $v\in\mathbb{R}^2$  is a continuous arc with respect to  $\tau$ , connecting  $\alpha_v(0)=0$  to  $\alpha_v(1)=v$ . In particular,  $\tau$  is path-connected, then also connected. For  $\varepsilon>0$  small enough, precisely smaller than  $\|v\|$ , the open neighbourhoods of v are given by open segments around v on the line though v and the origin 0. Therefore, the induced topology on  $S^1$  is the discrete topology.

**Exercise 4.** On  $\mathbb{R}$ , consider the equivalence relation defined by:  $x \sim y$  if and only if |x| = |y|. Consider  $\mathbb{R}$  endowed with the Euclidean topology  $\tau_{\text{Eucl}}$ , and the induced quotient topology on  $X := (\mathbb{R}, \tau_{\text{Eucl}})/\sim$ . Prove that X is homeomorphic to  $[0, +\infty)$  (with the subspace topology induced by  $(\mathbb{R}, \tau_{\text{Eucl}})$ ).

**Solution.** Consider the map  $f: \mathbb{R} \to [0, +\infty)$  defined by f(x) = |x|. Then clearly f is continuous and surjective, and f(x) = f(y) if and only if  $x \sim y$ . Therefore f induces a continuous, bijective function  $\tilde{f}: X \to [0, +\infty)$ . We note that  $\tilde{f}$  is also open: given U open in X, namely  $\pi^{-1}(U)$  is a satured open set in  $\mathbb{R}$ , where  $\pi: \mathbb{R} \to X$  denotes the natural projection onto the quotient. This means that  $\pi^{-1}(U)$  is a union of open intervals, symmetric with respect to the origin. Then  $\tilde{f}(U) = f(\pi^{-1}(U)) = \pi^{-1}(U) \cap [0, +\infty)$  is open in  $[0, +\infty)$  with respect to the subspace topology.