IMM-LUMS LAHORE 2024/2025 ADVANCED TOPOLOGY ## Exam 1 **Exercise 1.** On \mathbb{R} , consider the collection of subsets that are closed under addition: $$\mathcal{B} = \{ K \subseteq \mathbb{R} : \forall x, y \in K, x + y \in K \}.$$ - (a) Prove that \mathcal{B} is the basis of a topology τ on \mathbb{R} . - (b) Describe the open sets in τ that contain only a finite number of points. - (c) Is (\mathbb{R}, τ) connected? - (d) Is (\mathbb{R}, τ) compact? - (e) Prove that the linear functions $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ given by $f(x) = \lambda \cdot x$, where $\lambda \in \mathbb{R}$, are continuous. **Solution.** Note that $\mathbb{R} \in \mathcal{B}$, and that, if $K_1, K_2 \in \mathcal{B}$, then also $K_1 \cap K_2 \in \mathcal{B}$, therefore \mathcal{B} is a basis for some topology on \mathbb{R} . Note that, if $K \in \mathcal{B}$ contains a positive real number $\alpha > 0$, then it also contains $n \cdot \alpha$ for any $n \in \mathbb{N} \setminus \{0\}$, then it contains infinitely many points; the same argument also applies when $K \in \mathcal{B}$ contains a negative real number. Then, the only non-empty finite open set is $\{0\} \in \mathcal{B}$. The topology τ is not connected: more precisely, $\mathbb{R} = (-\infty, 0) \cup \{0\} \cup (0, +\infty)$ with $(-\infty, 0)$, $\{0\}$, $\{0, +\infty\}$ disjoint clopen sets. The topology τ is not compact: for instance, $\{\mathbb{N}\cdot x\}_{x\in\mathbb{R}}$ is a collection of open subsets that cover \mathbb{R} ; but any finite subfamily contains at most countable many points, therefore cannot cover the whole \mathbb{R} . Consider $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \lambda \cdot x$ where $\lambda \in \mathbb{R}$. To check whether it is continuous, it is enough to check whether, for every $K \in \mathcal{B}$, we have $f^{-1}(K) \in \tau$. Note that, if $x, y \in f^{-1}(K)$, then $\lambda x, \lambda y \in K \in \mathcal{B}$, therefore $\lambda x + \lambda y = \lambda(x + y) \in K$, then $x + y \in f^{-1}(K)$. Therefore, $f^{-1}(K) \in \mathcal{B}$ is open. **Exercise 2.** Consider \mathbb{R} endowed with the Euclidean topology, and $\mathbb{R}^{\mathbb{N}} = \{(x_n)_n : x_n \in \mathbb{R} \text{ for evey } n \in \mathbb{N}\}$, the space of real sequences, endowed with the product topology. Prove that the diagonal $$\Delta = \{(x_n)_n : x_n = x_0 \text{ for every } n \in \mathbb{N}\} \subset \mathbb{R}^{\mathbb{N}}$$ is a closed subset. What happens if we consider the box topology on $\mathbb{R}^{\mathbb{N}}$ in place of the product topology? Date: February 17th, 2025. **Solution.** The diagonal Δ contains the constant sequences. Consider a sequence $(x_n)_n \notin \Delta$, a non-constant sequence. Therefore there exist $h \neq k$ such that $x_h \neq x_k$. Since \mathbb{R} is Hausdorff, then there exist $U_h \ni x_h$, $U_k \ni x_k$ open neighbourhoods such that $U_h \cap U_k = \emptyset$. By denoting $p_i \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ the *i*th natural projection, we have that $U := p_h^{-1}(U_h) \cap p_k^{-1}(U_k)$ is an open neighbourhood of $(x_n)_n$ (in both the product and the box topologies) such that $U \cap \Delta = \emptyset$. Therefore Δ^c is open, then Δ is closed. **Exercise 3.** On \mathbb{R}^2 , consider $\delta \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by $$\delta(v,w) = \left\{ \begin{array}{ll} \|v-w\| & \text{if} \quad v,w \text{ are linearly dependent,} \\ \|v\| + \|w\| & \text{if} \quad v,w \text{ are linearly independent.} \end{array} \right.$$ - Prove that δ is a metric. - Denote the induced topology by τ . Is (\mathbb{R}^2, τ) connected? Is it path-connected? - What is the topology induced on $S^1 \subseteq (\mathbb{R}^2, \tau)$ as a subspace? **Solution.** It is clear that δ is non-negative and symmetric. It is also clear that $\delta(v,w)=0$ if and only if v=w: indeed, if $\|v\|+\|w\|=0$ then v=w=0 but therefore they are not linearly independent; if $\|v-w\|=0$ then v=w. On every line through the origin, the induced topology is the Euclidean one. In particular, the function $\alpha_v \colon [0,1] \to \mathbb{R}^2$ defined by $\alpha(t)=t\cdot v$ for some fixed $v\in\mathbb{R}^2$ is a continuous arc with respect to τ , connecting $\alpha_v(0)=0$ to $\alpha_v(1)=v$. In particular, τ is path-connected, then also connected. For $\varepsilon>0$ small enough, precisely smaller than $\|v\|$, the open neighbourhoods of v are given by open segments around v on the line though v and the origin 0. Therefore, the induced topology on S^1 is the discrete topology. **Exercise 4.** On \mathbb{R} , consider the equivalence relation defined by: $x \sim y$ if and only if |x| = |y|. Consider \mathbb{R} endowed with the Euclidean topology τ_{Eucl} , and the induced quotient topology on $X := (\mathbb{R}, \tau_{\text{Eucl}})/\sim$. Prove that X is homeomorphic to $[0, +\infty)$ (with the subspace topology induced by $(\mathbb{R}, \tau_{\text{Eucl}})$). **Solution.** Consider the map $f: \mathbb{R} \to [0, +\infty)$ defined by f(x) = |x|. Then clearly f is continuous and surjective, and f(x) = f(y) if and only if $x \sim y$. Therefore f induces a continuous, bijective function $\tilde{f}: X \to [0, +\infty)$. We note that \tilde{f} is also open: given U open in X, namely $\pi^{-1}(U)$ is a satured open set in \mathbb{R} , where $\pi: \mathbb{R} \to X$ denotes the natural projection onto the quotient. This means that $\pi^{-1}(U)$ is a union of open intervals, symmetric with respect to the origin. Then $\tilde{f}(U) = f(\pi^{-1}(U)) = \pi^{-1}(U) \cap [0, +\infty)$ is open in $[0, +\infty)$ with respect to the subspace topology.