OVERVIEW
ROLES AT IMM
ABOUT ME
Current involvements
Additional experiences
CURRICULUM
MORE INFORMATION
My research
Some words on my pure mathematics topics
Interacting Particle Systems
Interacting particle systems model complex phenomena in natural and social sciences. These phenomena involve a large number of interrelated components, which are modeled as particles confined to a lattice. I study so-called interacting diffusion models, i.e. I consider continuous on-site variables. Therefore my models take the form of a system of coupled stochastic differential equations. My goal is to describe the macroscopic behavior of the interacting diffusion as a nonlinear stochastic partial differential equation.
Gradient flows of non-convex potentials
Gradient flows describe the evolution of a system as the steepest descent of an energy potential. This means that our system is minimizing its energy over time. Non-convex potentials, appearing for example in phase transitions or image processing, give rise to forward-backward parabolic PDEs. I try to determine the regime of initial data under which we can prove existence of solutions to such PDEs. Moreover, I study the behavior and properties of solutions to forward-backward parabolic PDEs.
Methods of Statistical Mechanics in Turbulence
A very prominent feature of turbulent flows, which appear in fluid dynamics, meteorology and engineering (e.g. in combustion phenomena), is the spontaneous appearance of large-scale, long-lived vortices, e.g. Jupiter's Great Red Spot. Though the distributions of vorticity in the actual flow of normal fluids are continuous, in many cases a set of discrete vortices provides a reasonable approximation. I study these point vortex models with methods of statistical mechanics.